Эвристики для поиска кратчайших путей — различия между версиями
(→Алгоритм A*) |
(→Алгоритм A*) |
||
Строка 131: | Строка 131: | ||
**<tex>\ell_{h}(v,w)=0</tex>, если ребро <tex>(v,w)</tex> лежит на кратчайшем пути, иначе редуцированная стоимость положительна | **<tex>\ell_{h}(v,w)=0</tex>, если ребро <tex>(v,w)</tex> лежит на кратчайшем пути, иначе редуцированная стоимость положительна | ||
**все посещённые вершины будут лежать на кратчайшем пути | **все посещённые вершины будут лежать на кратчайшем пути | ||
+ | == Двунаправленный A*== |
Версия 12:12, 4 декабря 2013
Данная статья - перевод выступления Renato F. Werneck в Microsoft Data Structures and Algorithms School в 2010 году.
Содержание
Проблема поиска кратчайшего пути
Дано:
- ориентированный граф
- отправная точка - вершина , пункт назначения - вершина
Цель: найти кратчайший путь
Мы будем рассматривать сеть автомобильных дорог:
- - множество перекрёстков
- - множество дорог
- - среднее время, которое занимает проезд по дороге
Алгоритм Дейкстры
основная статья: Алгоритм Дейкстры
- на каждом шаге выбирает из множества непросмотренных вершин вершину с наименьшим расстоянием до старта и релаксирует рёбра, исходящие из неё
- завершает свою работу, когда цель достигнута (или просмотрены все вершины)
Скорость работы алгоритма Дейкстры сильно зависит от скорости операций с приоритетной очередью.
Поскольку мы рассматриваем сеть автомобильных дорог, то
(граф планарен почти везде).Для фибоначчиевых куч время работы алгоритма составляет
, для двоичных куч:Но на практике чаще используются 2-, 4- и 8-ичные кучи: они более простые, оценка времени работы содержит меньшее количество скрытых констант.
Улучшения алгоритма Дейкстры
Многоуровневые корзины(multi-level buckets, MLB)
Структура данных | Время работы (сек) |
---|---|
Двоичная куча | 12,38 |
4-куча | 11,53 |
8-куча | 11,52 |
MLB | 9,36 |
MLB + калибровка | 8,04 |
Подходит только графов с целочисленными рёбрами.
- Будем складывать вершины в "корзины"
- Наша структура данных будет поддерживать индекс
- На каждом шаге алгоритма, если пусто, то увеличим , а иначе достанем одну вершину из
- При релаксации будем убирать вершину из исходной корзины и класть в корзину, соответствующую новому значению
Можно заметить, что при такой реализации, все операции с приоритетной очередью будут выполняться за
. Тогда, для одного уровня корзин время работы алгоритма Дейкстры можно оценить как , где - максимальная длина ребра в графе.При двухуровневой реализации будем поддерживать два уровня корзин: первый уровень будет соответствовать одноуровневой реализации, а корзины второго уровня будут содержать диапазон значений корзин первого уровня, которые в них входят.
Соответственно, нам нужно поддерживать два индекса
и для каждого из уровней соответственно.При такой реализации, время работы алгоритма Дейкстры можно оценить как
Калибровка(caliber)
Введём величину калибр вершины
- вес минимального ребра, входящего в , или , если в вершину не входит ни одно ребро. Будем говорить, что текущее значение точно, если оно равно длине пути .Лемма (1): |
Предположим, что длины рёбер неотрицательны. Пусть - минимальное из текущих значений . Тогда, если существует такая вершина , что , то текущее значение точно. |
Эта лемма позволяет нам смягчить правило выбора текущей вершины в алгоритме Дейкстры, при этом сохраняя инвариант(почти все вершины обрабатываются единожды). Калибровка использует Лемму 1 чтобы находить и обрабатывать вершины с точными текущими значениями расстояния до них.
Модифицируем нашу MLB - структуру: будем хранить помеченные вершины в двух группах: сет
и приоритетная очередь , реализованная на MLB. Алгоритм, приведённый ниже, называется алгоритмом умной очереди.Вершины в
будут иметь точные метки. Если непусто, мы удалим оттуда вершину и прорелаксируем всех её соседей. Если же пусто, мы достанем из вершину с минимальной меткой и прорелаксируем всех её соседей.Рассмотрим механизм релаксации: пусть мы уменьшаем
. Заметим, что в этом случае не могло лежать в (иначе было не точно). Если - применим к . Эта операция либо переместила внутри , либо определила, что метка точна и переместила в . Если же , мы применим операцию , и запишется в или , в зависимости от того, выполняется ли условие леммы.Двунаправленный поиск
Мы можем уменьшить количество посещённых вершин в алгоритме Дейкстры, просто запустив его и из начальной и из конечной вершины. Такая эвристика не испортит скорость работы в худшем случае.
Создадим две приоритетных очереди и запустим на одной из них алгоритм Дейкстры, ищущий
из , а на другой - ищущий из . Алгоритм завершит свою работу, когда какая-нибудь вершина будет удалена из обоих очередей.Тонкость этого алгоритма заключается в том, что кратчайший путь
не обязательно пройдёт через вершину . Поэтому после остановки двунаправленного поиска, нам необходимо перебрать все рёбра из вершин, имеющих в вершины с и найти ребро с минимальным . Если эта величина меньше, чем длина первоначально найденного пути - то это и есть результат работы алгоритма.На практике, такой двунаправленный поиск быстрее обычного алгоритма Дейкстры примерно в два раза.
Двухэтапные алгоритмы
К сожалению, двунаправленный алгоритм Дейкстры всего в два раза быстрее обычного, а это слишком медленно. Рассмотрим алгоритм поиска кратчайшего пути, состоящий из двух этапов:
- Препроцессинг
- запускается единожды для графа
- может занимать много времени
- рассчитывает некую вспомогательную информацию
- Запрос
- может использовать данные, полученные во время препроцессинга
- запускается по требованию для пары
- должен выполняться очень быстро (в реальном времени)
Можно рассмотреть в этом ключе два примера:
- Алгоритм Дейкстры: препроцессинг - ничего не делать, запрос - выполнение алгоритма Дейкстры;
- Полный перебор: препроцессинг - посчитать таблицу расстояний размером (займёт порядка 5 лет времени и 1 петабайта памяти для карты Европы), запрос - обратиться к элементу таблицы.
Оба эти примера - крайние случаи. Нам нужно нечто более гибкое: препроцессинг за часы/минуты, рост количества предпосчитанных данных линейно от размера графа и запросы в реальном времени.
Алгоритм A*
основная статья: Алгоритм A*
Приведём немного изменённую версию этого алгоритма.
Возьмём функцию
- потенциал вершины. Тогда, с её помощью можно определить редуцированную стоимость каждого ребра какЗаметим, что замена
на не изменит кратчайших путей: возьмём любой путь . Тогда . Тогда .Таким образом длины все путей
изменятся на одну и ту же величинуВ нашем случае, алгоритм A* будет эквивалентен алгоритму Дейкстры, на графе
, у которого стоимости рёбер заменили на их редуцированные стоимости. На каждом шаге необходимо будет выбирать из очереди вершину с минимальным значением . Очевидно, будет одинаковым для любой вершины .Назовём функцию
правдоподобной, если . Известно, что, если и правдоподобна, то для любого , - нижняя границаГлавное отличие от алгоритма Дейкстры в том, что A* является целенаправленным алгоритмом - он обрабатывает в первую очередь те вершины, которые находятся ближе к результату.
Скорость работы алгоритма A*:
- в худшем случае - - вырождается в алгоритм Дейкстры
- в лучшем случае -
- , если ребро лежит на кратчайшем пути, иначе редуцированная стоимость положительна
- все посещённые вершины будут лежать на кратчайшем пути