Алгоритм Штор-Вагнера нахождения минимального разреза — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 22: Строка 22:
 
Идея алгоритма довольно проста. Будем <tex>n-1</tex> раз повторять следующий процесс: находить минимальный разрез между какой-нибудь парой вершин <tex>s</tex> и <tex>t</tex>, а затем объединять эти две вершины в одну (создавать новую вершину, список смежности которой равен объединению списков смежности <tex>s</tex> и <tex>t</tex>). В конце концов, после <tex>n-1</tex> итерации, останется одна вершина. После этого ответом будет являться минимальный среди всех <tex>n-1</tex> найденных разрезов. Действительно, на каждой <tex>i</tex>-ой стадии найденный минимальный разрез <tex>\langle A,B \rangle</tex> между вершинами <tex>s_i</tex> и <tex>t_i</tex> либо окажется искомым глобальным минимальным разрезом, либо же, напротив, вершины <tex>s_i</tex> и <tex>t_i</tex> невыгодно относить к разным множествам, поэтому мы ничего не ухудшаем, объединяя эти две вершины в одну.
 
Идея алгоритма довольно проста. Будем <tex>n-1</tex> раз повторять следующий процесс: находить минимальный разрез между какой-нибудь парой вершин <tex>s</tex> и <tex>t</tex>, а затем объединять эти две вершины в одну (создавать новую вершину, список смежности которой равен объединению списков смежности <tex>s</tex> и <tex>t</tex>). В конце концов, после <tex>n-1</tex> итерации, останется одна вершина. После этого ответом будет являться минимальный среди всех <tex>n-1</tex> найденных разрезов. Действительно, на каждой <tex>i</tex>-ой стадии найденный минимальный разрез <tex>\langle A,B \rangle</tex> между вершинами <tex>s_i</tex> и <tex>t_i</tex> либо окажется искомым глобальным минимальным разрезом, либо же, напротив, вершины <tex>s_i</tex> и <tex>t_i</tex> невыгодно относить к разным множествам, поэтому мы ничего не ухудшаем, объединяя эти две вершины в одну.
  
Следовательно нам необходимо для данного графа найти минимальный разрез между какой-нибудь парой вершин <tex>s</tex> и <tex>t</tex>. Для этого вводим некоторое множество вершин <tex>A</tex>, которое изначально содержит единственную произвольную вершину <tex>s</tex>. На каждом шаге находится вершина, наиболее сильно связанная с множеством <tex>A</tex>, т.е. вершина <tex>v \not\in A</tex>, для которой следующая величина <tex dpi = "140">w(v,A) = \sum\limits_{(v,u) \in E, \atop u \in A} w(v,u)</tex> максимальна (максимальна сумма весов рёбер, один конец которых <tex>v</tex>, а другой принадлежит <tex>A</tex>).
+
Следовательно нам необходимо для данного графа найти минимальный разрез между какой-нибудь парой вершин <tex>s</tex> и <tex>t</tex>. Для этого вводим некоторое множество вершин <tex>A</tex>, которое изначально содержит единственную произвольную вершину <tex>s</tex>. На каждом шаге находится вершина, наиболее сильно связанная с множеством <tex>A</tex>, т.е. вершина <tex>v \not\in A</tex>, для которой следующая величина <tex dpi = "140">w(v,A) = \sum\limits_{(v,u) \in E, \atop u \in A} w(v,u)</tex> максимальна (максимальна сумма весов рёбер, один конец которых <tex>v</tex>, а другой принадлежит <tex>A</tex>). Этот процесс завершится, когда все вершины перейдут в множество <tex>A</tex>.
 +
 
 +
 
 +
 
 +
minCut():
 +
  v[i] - список вершин, которые были сжаты в i-тую(сначала заполняется i);
 +
  for i = 1..n-1
 +
    обнуляем мн-во A;
 +
    обнуляем w(связности всех вершин);
 +
    for j = 1..n-1
 +
      s = вершина не из A, для которой w[s] - максимальна;
 +
      if (j != n-1)
 +
        добавляем s в A;
 +
        пересчитываем связность w[i] для остальных вершин;
 +
        prev = s;
 +
      else
 +
        if (w[s] < minCost)
 +
          minCost = w[s];
 +
          minCut = v[s];
 +
        s и prev объединяются в одну вершину;
 +
 
 +
== Корректность алгоритма ==
 +
{{Теорема
 +
|statement=
 +
Если добавить в множество <tex>A</tex> по очереди все вершины, каждый раз добавляя вершину, наиболее сильно связанную с <tex>A</tex>, то пусть предпоследняя добавленная вершина {{---}} <tex>s</tex>, а последняя {{---}} <tex>t</tex>. Тогда минимальный <tex>s</tex>-<tex>t</tex> разрез состоит из единственной вершины {{---}} <tex>t</tex>
 +
|proof=
 +
Рассмотрим произвольный <tex>s</tex>-<tex>t</tex> разрез <tex>C</tex> и покажем, что его вес не может быть меньше веса разреза, состоящего из единственной вершины <tex>t</tex>:
 +
<tex dpi = '130'>w(\{t\}) \le w(C)</tex>.
 +
}}

Версия 00:20, 10 декабря 2013

Необходимые определения

[math]G[/math] - неориентированный взвешенный граф с [math]n[/math] вершинами и [math]m[/math] ребрами.

Определение:
Разрезом называется такое разбиение множества [math]V[/math] на два подмножества [math]A[/math] и [math]B[/math], что:
  • [math]A, B \subset V[/math];
  • [math]A, B \neq \emptyset[/math];
  • [math]A \cap B = \emptyset[/math];
  • [math]A \cup B = V[/math].


Определение:
Весом разреза называется сумма весов рёбер, проходящих через разрез, т.е. таких рёбер, один конец которых принадлежит [math]A[/math], а второй конец - [math]B[/math].
  • [math]w(A, B) =[/math] [math]\sum\limits_{uv \in E, u \in A, v \in B} w(u, v)[/math]


Эту задачу называют "глобальным минимальным разрезом". Глобальный минимальный разрез равен минимуму среди разрезов минимальной стоимости по всевозможным парам исток-сток. Хотя эту задачу можно решить с помощью любого алгоритма нахождения максимального потока (запуская его O(n^2) раз для всевозможных пар истока и стока), однако ниже описан гораздо более простой и быстрый алгоритм, предложенный Матильдой Штор (Mechthild Stoer) и Франком Вагнером (Frank Wagner) в 1994 г.

В общем случае допускаются петли и кратные рёбра, все кратные рёбра можно заменить одним ребром с их суммарным весом а петли не влияют на решение. Поэтому будем считать, что кратных ребер и петель во входном графе нет.

Алгоритм

Идея алгоритма довольно проста. Будем [math]n-1[/math] раз повторять следующий процесс: находить минимальный разрез между какой-нибудь парой вершин [math]s[/math] и [math]t[/math], а затем объединять эти две вершины в одну (создавать новую вершину, список смежности которой равен объединению списков смежности [math]s[/math] и [math]t[/math]). В конце концов, после [math]n-1[/math] итерации, останется одна вершина. После этого ответом будет являться минимальный среди всех [math]n-1[/math] найденных разрезов. Действительно, на каждой [math]i[/math]-ой стадии найденный минимальный разрез [math]\langle A,B \rangle[/math] между вершинами [math]s_i[/math] и [math]t_i[/math] либо окажется искомым глобальным минимальным разрезом, либо же, напротив, вершины [math]s_i[/math] и [math]t_i[/math] невыгодно относить к разным множествам, поэтому мы ничего не ухудшаем, объединяя эти две вершины в одну.

Следовательно нам необходимо для данного графа найти минимальный разрез между какой-нибудь парой вершин [math]s[/math] и [math]t[/math]. Для этого вводим некоторое множество вершин [math]A[/math], которое изначально содержит единственную произвольную вершину [math]s[/math]. На каждом шаге находится вершина, наиболее сильно связанная с множеством [math]A[/math], т.е. вершина [math]v \not\in A[/math], для которой следующая величина [math]w(v,A) = \sum\limits_{(v,u) \in E, \atop u \in A} w(v,u)[/math] максимальна (максимальна сумма весов рёбер, один конец которых [math]v[/math], а другой принадлежит [math]A[/math]). Этот процесс завершится, когда все вершины перейдут в множество [math]A[/math].


minCut():
  v[i] - список вершин, которые были сжаты в i-тую(сначала заполняется i);
  for i = 1..n-1
    обнуляем мн-во A;
    обнуляем w(связности всех вершин);
    for j = 1..n-1
      s = вершина не из A, для которой w[s] - максимальна;
      if (j != n-1)
        добавляем s в A;
        пересчитываем связность w[i] для остальных вершин; 
        prev = s;
      else
        if (w[s] < minCost)
          minCost = w[s];
          minCut = v[s];
        s и prev объединяются в одну вершину;

Корректность алгоритма

Теорема:
Если добавить в множество [math]A[/math] по очереди все вершины, каждый раз добавляя вершину, наиболее сильно связанную с [math]A[/math], то пусть предпоследняя добавленная вершина — [math]s[/math], а последняя — [math]t[/math]. Тогда минимальный [math]s[/math]-[math]t[/math] разрез состоит из единственной вершины — [math]t[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим произвольный [math]s[/math]-[math]t[/math] разрез [math]C[/math] и покажем, что его вес не может быть меньше веса разреза, состоящего из единственной вершины [math]t[/math]:

[math]w(\{t\}) \le w(C)[/math].
[math]\triangleleft[/math]