Алгоритм Хаффмана для n ичной системы счисления — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
== Алгоритм ==
 
== Алгоритм ==
Для построения <tex>n</tex>-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а <tex>n</tex> букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором <tex>n</tex>  букв заменяются на одну, приводит к уменьшению числа букв на <tex>n-1</tex>; так как для построения <tex>n</tex>-ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из <tex>n</tex>  букв (сопоставляемых <tex>n</tex>  сигналам кода), то необходимо, чтобы число <tex>m</tex>  букв первоначального алфавита было представимо в виде <tex>m = n + k(n - 1)</tex> ,<tex>k \in \mathbb{Z}</tex>. Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение <tex>n</tex>-ичного кода Хаффмана проводbтся уже точно так же, как и случае двоичного кода.
+
Для построения <tex>n</tex>-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а <tex>n</tex> букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором <tex>n</tex>  букв заменяются на одну, приводит к уменьшению числа букв на <tex>n-1</tex>; так как для построения <tex>n</tex>-ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из <tex>n</tex>  букв (сопоставляемых <tex>n</tex>  сигналам кода), то необходимо, чтобы число <tex>m</tex>  букв первоначального алфавита было представимо в виде <tex>m = n + k(n - 1)</tex> ,<tex>k \in \mathbb{Z}</tex>. Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение <tex>n</tex>-ичного кода Хаффмана проводится уже точно так же, как и в случае двоичного кода.
  
 
== Пример ==
 
== Пример ==
Для примера возьмём слово ''"Кириллица"''.Возьмем <tex>n=3</tex> (троичная система счисления).Алфавит будет <tex>A= \{</tex> ''к, и, р, л, ц, а'' <tex>\} </tex>, а набор весов <tex>W=\{1, 3, 1, 2, 1, 1\}</tex>.
+
Для примера возьмём слово ''"кириллица"''.Возьмем <tex>n=3</tex> (троичная система счисления).Алфавит будет <tex>A= \{</tex> ''к, и, р, л, ц, а'' <tex>\} </tex>, а набор весов <tex>W=\{1, 3, 1, 2, 1, 1\}</tex>.
Будем действовать согласно алгоритму выше,у нас число букв первоначального алфавита <tex>m</tex> равно 6.Если подставить значения <tex>n</tex> и <tex>m</tex> в формулу для оптимального кодирования <tex>m = n + k(n - 1)</tex> ,то получится что <tex>k</tex> не является целым.Но если увеличить число <tex>m</tex> на 1(добавлением фиктивной буквы "я" с весом 0),то можно подобрать целое <tex>k</tex> равное 2.
+
Будем действовать согласно алгоритму выше;у нас число букв первоначального алфавита <tex>m</tex> равно 6.Если подставить значения <tex>n</tex> и <tex>m</tex> в формулу для оптимального кодирования <tex>m = n + k(n - 1)</tex> ,то получится что <tex>k</tex> не является целым.Но если увеличить число <tex>m</tex> на 1(добавлением фиктивной буквы "я" с весом 0),то можно подобрать целое <tex>k</tex> равное 2.
 
Таким образом можно записать:
 
Таким образом можно записать:
 
{| class="wikitable"
 
{| class="wikitable"
Строка 12: Строка 12:
 
|}
 
|}
  
По алгоритму возьмем два символа с наименьшей частотой {{---}} это ''м'' и ''п''. Сформируем из них новый узел ''мп'' весом 2 и добавим его к списку узлов:
+
По алгоритму возьмем три символа с наименьшей частотой {{---}} это ''я'',''к'',''р''. Сформируем из них новый узел ''якр'' весом 2 и добавим его к списку узлов:
  
 
{| class="wikitable"
 
{| class="wikitable"
! Узел || и || мп || с
+
! Узел || якр || и || л || ц || а
 
|-
 
|-
| Вес || 4 || 2 || 3
+
| Вес || 2 || 3 || 2 || 1 || 1
 
|}
 
|}
  
Затем объединим в один узел узлы ''мп'' и ''c'':
+
Затем объединим в один узел узлы ''л'',''ц'',''а'':
  
 
{| class="wikitable"
 
{| class="wikitable"
! Узел || и || мпс
+
! Узел || якр || и || лца
 
|-
 
|-
| Вес || 4 || 5
+
| Вес || 2 || 3 || 4
 
|}
 
|}
  
И, наконец, объединяем два узла ''и'' и ''мпс''. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:
+
И, наконец, объединяем три узла ''якр'',''и'',''лца''. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:
  
 
{| class="wikitable"
 
{| class="wikitable"
! Символ || и || м || п || с
+
! Символ || к || и || р || л || ц || а || я
 
|-
 
|-
| Код || 0 || 100 || 101 || 11
+
| Код || +- || - || +0 || 00 || 0+ || 0- || ++
 
|}
 
|}
  
Таким образом, закодированное слово ''"миссисипи"'' будет выглядеть как ''"1000111101101010"''. Длина закодированного слова {{---}} 16 бит. Стоит заметить, что если бы мы использовали для кодирования каждого символа из четырёх по 2 бита, длина закодированного слова составила бы 18 бит.
+
Таким образом, закодированное слово ''"кириллица"'' будет выглядеть как ''"+--+0-0000-0+0-"''. Длина закодированного слова {{---}} 15 бит. Стоит заметить, что если бы мы использовали для кодирования каждого символа из шести по 2 бита, длина закодированного слова составила бы 18 бит.
  
  
 
== Корректность алгоритма Хаффмана для <tex>n</tex>-ичной системы счисления ==
 
== Корректность алгоритма Хаффмана для <tex>n</tex>-ичной системы счисления ==
 
Доказательство аналогично тому,что представлено в теме [[Алгоритм Хаффмана]].Только вместо двух символом с минимальными частотами надо брать <tex>n</tex> символов с минимальными частотами(по алгоритму вес символа также может равняться 0)
 
Доказательство аналогично тому,что представлено в теме [[Алгоритм Хаффмана]].Только вместо двух символом с минимальными частотами надо брать <tex>n</tex> символов с минимальными частотами(по алгоритму вес символа также может равняться 0)

Версия 02:55, 12 декабря 2013

Алгоритм

Для построения [math]n[/math]-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а [math]n[/math] букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором [math]n[/math] букв заменяются на одну, приводит к уменьшению числа букв на [math]n-1[/math]; так как для построения [math]n[/math]-ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из [math]n[/math] букв (сопоставляемых [math]n[/math] сигналам кода), то необходимо, чтобы число [math]m[/math] букв первоначального алфавита было представимо в виде [math]m = n + k(n - 1)[/math] ,[math]k \in \mathbb{Z}[/math]. Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение [math]n[/math]-ичного кода Хаффмана проводится уже точно так же, как и в случае двоичного кода.

Пример

Для примера возьмём слово "кириллица".Возьмем [math]n=3[/math] (троичная система счисления).Алфавит будет [math]A= \{[/math] к, и, р, л, ц, а [math]\} [/math], а набор весов [math]W=\{1, 3, 1, 2, 1, 1\}[/math]. Будем действовать согласно алгоритму выше;у нас число букв первоначального алфавита [math]m[/math] равно 6.Если подставить значения [math]n[/math] и [math]m[/math] в формулу для оптимального кодирования [math]m = n + k(n - 1)[/math] ,то получится что [math]k[/math] не является целым.Но если увеличить число [math]m[/math] на 1(добавлением фиктивной буквы "я" с весом 0),то можно подобрать целое [math]k[/math] равное 2. Таким образом можно записать:

Узел к и р л ц а я
Вес 1 3 1 2 1 1 0

По алгоритму возьмем три символа с наименьшей частотой — это я,к,р. Сформируем из них новый узел якр весом 2 и добавим его к списку узлов:

Узел якр и л ц а
Вес 2 3 2 1 1

Затем объединим в один узел узлы л,ц,а:

Узел якр и лца
Вес 2 3 4

И, наконец, объединяем три узла якр,и,лца. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:

Символ к и р л ц а я
Код +- - +0 00 0+ 0- ++

Таким образом, закодированное слово "кириллица" будет выглядеть как "+--+0-0000-0+0-". Длина закодированного слова — 15 бит. Стоит заметить, что если бы мы использовали для кодирования каждого символа из шести по 2 бита, длина закодированного слова составила бы 18 бит.


Корректность алгоритма Хаффмана для [math]n[/math]-ичной системы счисления

Доказательство аналогично тому,что представлено в теме Алгоритм Хаффмана.Только вместо двух символом с минимальными частотами надо брать [math]n[/math] символов с минимальными частотами(по алгоритму вес символа также может равняться 0)