Алгоритмы на деревьях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
'''Диаметр дерева''' - максимальная длина кратчайшего пути между любыми двумя вершинами.
 
'''Диаметр дерева''' - максимальная длина кратчайшего пути между любыми двумя вершинами.
 
Алгоритм в этой статье находит диаметр в дереве,причём очень простой реализацией и низким временем работы.
 
Алгоритм в этой статье находит диаметр в дереве,причём очень простой реализацией и низким временем работы.
 +
diameter = max{<tex> v </tex>,<tex> u </tex> <tex> \subset graph, </tex> <tex> v \ne u </tex>} dist(<tex> v, u </tex>)
  
 
== Алгоритм ==
 
== Алгоритм ==

Версия 10:58, 18 декабря 2013

Определение

Диаметр дерева - максимальная длина кратчайшего пути между любыми двумя вершинами. Алгоритм в этой статье находит диаметр в дереве,причём очень простой реализацией и низким временем работы. diameter = max{[math] v [/math],[math] u [/math] [math] \subset graph, [/math] [math] v \ne u [/math]} dist([math] v, u [/math])

Алгоритм

Возьмём любую вершину [math] v [/math] и найдём расстояния до всех других вершин.

d = min{[math] v [/math],[math] u [/math] [math] \subset graph, [/math] [math] v \ne u [/math]} dist([math] v, u [/math])

Возьмём вершину [math] u [/math] такую,что d[u] >= d[t] для любого t.Снова найдём расстояние от [math]u[/math] до всех остальных вершин.Самое большое расстояние - диаметр дерева. Расстояние до остальных вершин удобно искать алгоритмом BFS.

Реализация

int diameterTree(graph g)              
{
    v = u = w = 0;
    bfs(g,v); // заполняет массив d[n] кратчайшими расстояниями до всех вершин.
    for(i = 0; i < n; i++)
         if (d[i] > d[u])
              u = i;
    bfs(g,u);
    for(i = 0; i < n; i++)
          if (d[i] > d[w])
               w = i;
    return d[w];
}



Обоснование корректности

Будем пользоваться свойством,что в любом дереве >= 2 листов(имеют степень один).


Теорема:
Искомое расстояние - есть расстояние между двумя листами.
Доказательство:
[math]\triangleright[/math]
Пусть нет, пусть искомое расстояние - есть расстояние между вершинами [math]a,b[/math] где [math]b[/math] - не является листом. Т.к. b не является листом, то значит её степень [math]\gt [/math] 1 => из неё существует ребро в непосещенную вершину (дважды посетить вершину [math]b[/math] мы не можем). Лемма доказана.
[math]\triangleleft[/math]


Запустив BFS от произвольной вершины. Мы получим дерево BFS.

Теорема:
В дереве BFS не существует ребер между вершинами из разных поддеревьев некоторого из общего предка.
Доказательство:
[math]\triangleright[/math]
Такое же как у дерева dfs.
[math]\triangleleft[/math]

Мы свели задачу к нахождению вершины [math]w[/math], такой, что сумма глубин поддеревьев максимальна.

Докажем, что одно из искомых поддеревьев содержит самый глубокий лист. Пусть нет, тогда взяв расстояние от [math]w[/math] до глубочайшего листа мы можем улучшить ответ.

Таким образом мы доказали, что нам нужно взять вершину [math]u[/math] с наибольшей глубиной после первого bfs, очевидно что ей в пару надо сопоставить вершину [math]w[/math] , что dist(u, w) - [math]max[/math] . Очевидно, что проблема решается запуском bfs из [math]u[/math].


Оценка производительности

Все операции кроме bfs - О(1). BFS работает линейное время,запускаем мы его 2 раза.Получаем O(V+E).