Декомпозиция Эдмондса-Галлаи — различия между версиями
Slavian (обсуждение | вклад) (→Структурная теорема Эдмондса-Галлаи) |
Slavian (обсуждение | вклад) (→Структурная теорема Эдмондса-Галлаи) |
||
Строка 123: | Строка 123: | ||
2) Из формулы <tex> \alpha(G - A) = \alpha (G) - |A|</tex> следует, что <tex>U_1,{...},U_n</tex>- компоненты связности графа <tex>G - A</tex>. Для любой вершины <tex>u \in U_i</tex> существует максимальное паросочетание <tex>M_u</tex> графа <tex>G - A</tex>, не содержащее <tex>u</tex>. Так как <tex>U_i</tex> - компонента связности графа <tex>G - A</tex>, паросочетание <tex>M_u</tex> содержит максимальное паросочетание графа <tex>D_i</tex> (разумеется, не покрывающее вершину <tex>u</tex>). Следовательно, <tex> \alpha (D_i) = \alpha (D_i - u) </tex> и по теореме Галлаи(выше) мы получаем, что граф <tex>D_i</tex> - фактор-критический. | 2) Из формулы <tex> \alpha(G - A) = \alpha (G) - |A|</tex> следует, что <tex>U_1,{...},U_n</tex>- компоненты связности графа <tex>G - A</tex>. Для любой вершины <tex>u \in U_i</tex> существует максимальное паросочетание <tex>M_u</tex> графа <tex>G - A</tex>, не содержащее <tex>u</tex>. Так как <tex>U_i</tex> - компонента связности графа <tex>G - A</tex>, паросочетание <tex>M_u</tex> содержит максимальное паросочетание графа <tex>D_i</tex> (разумеется, не покрывающее вершину <tex>u</tex>). Следовательно, <tex> \alpha (D_i) = \alpha (D_i - u) </tex> и по теореме Галлаи(выше) мы получаем, что граф <tex>D_i</tex> - фактор-критический. | ||
− | 3) Пусть <tex>M</tex> - максимальное паросочетание графа <tex>G</tex>, а <tex>M'</tex> получено из <tex>M</tex> удалением всех рёбер, инцидентных вершинам множества <tex>A</tex>. Тогда <tex>|M'| \ge |M| - |A|</tex> и по формуле <tex> \alpha (G - A) = \alpha (G) - |A|</tex> понятно, что <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>. Более того, из <tex> \alpha (G - A) = \alpha (G) - |A|</tex> следует <tex>|M'| = |M| - |A|</tex>, а значит, все вершины множества <tex>A</tex> покрыты в <tex>M</tex> различными рёбрами. Так как <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>, то по пунктам 1) и 2) очевидно, что <tex>M'</tex> содержит совершенное паросочетание графа <tex>C</tex> и почти совершенные паросочетания фактор-критических графов <tex> | + | 3) Пусть <tex>M</tex> - максимальное паросочетание графа <tex>G</tex>, а <tex>M'</tex> получено из <tex>M</tex> удалением всех рёбер, инцидентных вершинам множества <tex>A</tex>. Тогда <tex>|M'| \ge |M| - |A|</tex> и по формуле <tex> \alpha (G - A) = \alpha (G) - |A|</tex> понятно, что <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>. Более того, из <tex> \alpha (G - A) = \alpha (G) - |A|</tex> следует <tex>|M'| = |M| - |A|</tex>, а значит, все вершины множества <tex>A</tex> покрыты в <tex>M</tex> различными рёбрами. Так как <tex>M'</tex> - максимальное паросочетание графа <tex>G - A</tex>, то по пунктам 1) и 2) очевидно, что <tex>M'</tex> содержит совершенное паросочетание графа <tex>C</tex> и почти совершенные паросочетания фактор-критических графов <tex>D_1,{...},D_n</tex>. Значит, рёбра паросочетания <tex>M</tex> соединяют вершины <tex>A</tex> с непокрытыми <tex>M'</tex> вершинами различных компонент связности из <tex>U_1,{...},U_n</tex>. |
4) Из пункта 3) сразу же следуют оба равенства пункта 4). | 4) Из пункта 3) сразу же следуют оба равенства пункта 4). | ||
Версия 18:01, 21 декабря 2013
Определение: |
компонент связности нечетного размера в . | - количество
Определение: |
Дефицитом графа G мы будем называть величину:
|
Теорема (Бержа): |
Для любого графа G выполняется: |
Теорема (Татта-Бержа): |
Дан граф , размер максимального паросочетания в нем равен: |
Определение: |
Множество | , для которого , называется барьером.
Определение: |
Пусть | . Множeство соседей определим формулой:
Структурная теорема Эдмондса-Галлаи
Определение: |
Необходимые определения:
|
Определение: |
Граф | называется Фактор-критическим, если для любой вершины в графе существует полное паросочетание, не покрываеющее .
Теорема (Галлаи): |
- связен и для любой вершины выполняется равенство . |
Лемма (Галлаи, о стабильности): |
Пусть Тогда:
|
Доказательство: |
Достаточно доказать, что a. Путь b. Путь c. Путь кончается ребром из (см. рисунок) Рассмотрим паросочетание . Тогда , причём . Противоречие с максимальностью паросочетания .
|
Теорема (Галлаи, Эдмондс): |
Пусть G - граф, - компоненты связности графа , . тогда:
|
Доказательство: |
1) Последовательно удаляя вершины множества , по лемме о стабильности мы получим:Это означает, что не существует рёбер, соединяющих вершины из и . Каждое максимальное паросочетание графа покрывает все вершины множества , поэтому содержит совершенное паросочетание графа . Тем самым, мы доказали пункт 1).2) Из формулы следует, что - компоненты связности графа . Для любой вершины существует максимальное паросочетание графа , не содержащее . Так как - компонента связности графа , паросочетание содержит максимальное паросочетание графа (разумеется, не покрывающее вершину ). Следовательно, и по теореме Галлаи(выше) мы получаем, что граф - фактор-критический.3) Пусть 4) Из пункта 3) сразу же следуют оба равенства пункта 4). - максимальное паросочетание графа , а получено из удалением всех рёбер, инцидентных вершинам множества . Тогда и по формуле понятно, что - максимальное паросочетание графа . Более того, из следует , а значит, все вершины множества покрыты в различными рёбрами. Так как - максимальное паросочетание графа , то по пунктам 1) и 2) очевидно, что содержит совершенное паросочетание графа и почти совершенные паросочетания фактор-критических графов . Значит, рёбра паросочетания соединяют вершины с непокрытыми вершинами различных компонент связности из . |
Утверждение (следствие из теоремы): |
- барьер графа |