Алгоритмы на деревьях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
 
Алгоритм в этой статье находит диаметр в дереве.
 
Алгоритм в этой статье находит диаметр в дереве.
  
Пусть дан граф <tex>G = <V, E></tex> Тогда диаметром <tex>d</tex> называется <tex>\max\limits_{u, v \in V} dist(v, u)</tex>, где dist — кратчайшнее расстояние между вершинами  
+
Пусть дан граф <tex>G = <V, E></tex> Тогда диаметром <tex>d</tex> называется <tex>\max\limits_{u, v \in V} dist(v, u)</tex>, где <tex>dist</tex> — кратчайшнее расстояние между вершинами  
  
 
== Алгоритм ==
 
== Алгоритм ==
Строка 10: Строка 10:
 
<tex>d = min\{ v , u  \subset graph, v \ne u \}</tex> <tex>dist(v, u) </tex>
 
<tex>d = min\{ v , u  \subset graph, v \ne u \}</tex> <tex>dist(v, u) </tex>
  
Возьмём вершину <tex> u </tex> такую,что d[u] >= d[t] для любого t.Снова найдём расстояние от <tex>u</tex> до всех остальных вершин.Самое большое расстояние - диаметр дерева.
+
Возьмём вершину <tex> u </tex> такую,что <tex>d[u] >= d[t]</tex> для любого <tex>t</tex>.Снова найдём расстояние от <tex>u</tex> до всех остальных вершин.Самое большое расстояние - диаметр дерева.
 
Расстояние до остальных вершин удобно искать алгоритмом BFS.
 
Расстояние до остальных вершин удобно искать алгоритмом BFS.
  

Версия 23:58, 23 декабря 2013

Диаметр дерева - максимальная длина (в рёбрах) кратчайшего пути между любыми двумя вершинами. Алгоритм в этой статье находит диаметр в дереве.

Пусть дан граф [math]G = \lt V, E\gt [/math] Тогда диаметром [math]d[/math] называется [math]\max\limits_{u, v \in V} dist(v, u)[/math], где [math]dist[/math] — кратчайшнее расстояние между вершинами

Алгоритм

Возьмём любую вершину [math] v [/math] и найдём расстояния до всех других вершин.

[math]d = min\{ v , u \subset graph, v \ne u \}[/math] [math]dist(v, u) [/math]

Возьмём вершину [math] u [/math] такую,что [math]d[u] \gt = d[t][/math] для любого [math]t[/math].Снова найдём расстояние от [math]u[/math] до всех остальных вершин.Самое большое расстояние - диаметр дерева. Расстояние до остальных вершин удобно искать алгоритмом BFS.

Реализация

int diameterTree(graph g)              
{
    v = u = w = 0;
    bfs(g,v); // заполняет массив d[n] кратчайшими расстояниями до всех вершин.
    for(i = 0; i < n; i++)
         if (d[i] > d[u])
              u = i;
    bfs(g,u);
    for(i = 0; i < n; i++)
          if (d[i] > d[w])
               w = i;
    return d[w];
}



Обоснование корректности

Будем пользоваться свойством,что в любом дереве >= 2 листов(имеют степень один).


Теорема:
Искомое расстояние - есть расстояние между двумя листами.
Доказательство:
[math]\triangleright[/math]
Пусть нет, пусть искомое расстояние - есть расстояние между вершинами [math]a,b[/math] где [math]b[/math] - не является листом. Т.к. b не является листом, то значит её степень [math]\gt [/math] 1 => из неё существует ребро в непосещенную вершину (дважды посетить вершину [math]b[/math] мы не можем). Лемма доказана.
[math]\triangleleft[/math]


Запустив BFS от произвольной вершины. Мы получим дерево BFS.

Теорема:
В дереве BFS не существует ребер между вершинами из разных поддеревьев некоторого из общего предка.
Доказательство:
[math]\triangleright[/math]
Такое же как у дерева dfs.
[math]\triangleleft[/math]

Мы свели задачу к нахождению вершины [math]w[/math], такой, что сумма глубин поддеревьев максимальна.

Докажем, что одно из искомых поддеревьев содержит самый глубокий лист. Пусть нет, тогда взяв расстояние от [math]w[/math] до глубочайшего листа мы можем улучшить ответ.

Таким образом мы доказали, что нам нужно взять вершину [math]u[/math] с наибольшей глубиной после первого bfs, очевидно что ей в пару надо сопоставить вершину [math]w[/math] , что dist(u, w) - [math]max[/math] . Очевидно, что проблема решается запуском bfs из [math]u[/math].


Оценка производительности

Все операции кроме bfs - О(1). BFS работает линейное время,запускаем мы его 2 раза.Получаем O(V+E).