Участник:Shersh/Теорема о рекурсии — различия между версиями
Shersh (обсуждение | вклад) (гёдель) |
Shersh (обсуждение | вклад) м |
||
Строка 72: | Строка 72: | ||
|statement = В любой "достаточно богатой системе" существует истинное недоказуемое утверждение. | |statement = В любой "достаточно богатой системе" существует истинное недоказуемое утверждение. | ||
|proof = | |proof = | ||
− | Можно переформулировать теорему следующим образом: невозможно доказать, что <tex> p(x) = \ | + | Можно переформулировать теорему следующим образом: невозможно доказать, что <tex> p(x) = \perp </tex>. |
Тогда напишем такую программу: | Тогда напишем такую программу: |
Версия 16:43, 28 декабря 2013
Содержание
Неразрешимость универсального языка
Считаем, что язык программ над тем же алфавитом, что и язык входных данных. Если это не так, то можно просто взять объединение алфавитов, это ничто не испортит.
Универсальная программа:
.Универсальный язык:
Утверждение: |
Универсальный язык неразрешим |
Напишем такую программу:
p(x): if u(p, x) // можем так написать, потому что по теореме о рекурсии программа может знать свой код return 0 else return 1
Если Если же , тогда программа на входе возвращает , но по условию она должна вернуть 0, а следовательно, не принадлежит универсальному языку. , то мы пойдём во вторую ветку условного оператора и вернём , значит, пара принадлежит универсальному языку, но , значит, пара не принадлежит. Опять получили противоречие. |
Теорема Успенского-Райса
— разрешимое семейство языков.
— язык свойства языков. Допустим, что он разрешим. Тогда напишем такую программу
p(x):
if p
return z(x)
else
while true
Колмогоровская сложность
Определение: |
Колмогоровской сложностью строки | называется функция , которая равна минимальной длине программы .
Пример
Колмогоровская сложность программы, выводящей
():
for i = 1..n
print(0)
Теорема (Невычислимость Колмогоровской сложности): |
Колмогоровская сложность — невычислимая функция. |
Доказательство: |
, если только или — невычислима. Допустим, что p(): foreach x // перебираем слова по возрастанию длины if // теорема о рекурсии используется здесь print(x) exit Начиная с , . |
Busy beaver
Аналог I теоремы Гёделя о неполноте
Теорема: |
В любой "достаточно богатой системе" существует истинное недоказуемое утверждение. |
Доказательство: |
Можно переформулировать теорему следующим образом: невозможно доказать, что .Тогда напишем такую программу:
p(x):
foreach q
if q proves "p(x) зависает"
exit
|
Аналог II теоремы Гёделя о неполноте
Теорема о неподвижной точке
Зафиксируем