Алгоритм D* — различия между версиями
Kabanov (обсуждение | вклад) (→Псевдокод) |
Kabanov (обсуждение | вклад) (→Псевдокод) |
||
Строка 96: | Строка 96: | ||
Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами <tex>s_{start}</tex> и <tex>s_{goal}</tex>, используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за <tex>O(n^2 \cdot log(n))</tex>. Улучшим эту оценку с помощью алгоритма D* lite. | Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами <tex>s_{start}</tex> и <tex>s_{goal}</tex>, используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за <tex>O(n^2 \cdot log(n))</tex>. Улучшим эту оценку с помощью алгоритма D* lite. | ||
− | '''Примечание''': на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку <tex> | + | '''Примечание''': на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку <tex>O(n \cdot log(n))</tex>. |
== Алгоритм D* == | == Алгоритм D* == |
Версия 23:44, 3 января 2014
Алгоритм D* — алгоритм поиска кратчайшего пути во взвешенном ориентированном графе, где структура графа неизвестна заранее или постоянно подвергается изменению. Разработан Свеном Кёнигом и Максимом Лихачевым в 2002 году.
Содержание
Алгоритм LPA*
Постановка задачи
Дан взвешенный ориентированный граф
. Даны вершины и . Требуется после каждого изменения графа уметь вычислять функцию для каждой известной вершиныОписание
Обозначим множество
как множество вершин, исходящих из вершины .Аналогично множество
как множество вершин, входящих в вершину .Функция
будет возвращать стоимость перехода из вершины в вершину . При этом .Функция
будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины до .Если
Иначе
Вершина
может быть 3-х видов:- насыщена, если
- переполнена, если
- ненасыщена, если
Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным).
Функция
, где - вершина, возвращает вектор из 2-ух значений , .- .
- .
Если в конце поиска пути
, то мы не смогли найти путь от до на текущей итерации. Но после следующего изменения графа путь вполне может найтись.Псевдокод
Основная функция, описывающая алгоритм
Main(): { Initialize(); while (true) { ComputeShortestPath(); В данный момент мы знаем кратчайший путь изв . Ждем каких-либо изменений графа. for всех ориентированных ребер с измененными весами: { Обновляем результат функции ; UpdateVertex( ); } } }
Теперь опишем составные элементы подробнее
Initialize(): { //Заведем приоритетную очередь, в которую будем помещать вершины. Сортировка будет производиться по функции . for U.Insert( ; CalcKey( )); }
Функция. Возвращаемые значения сортируются в лексографическом порядке, т.е. сначала , потом CalcKey(s): { return [ ; ]; }
UpdateVertex(): { if ( ) if ( ) U.Remove(u); if ( ) U.Insert( ; CalcKey( )); }
ComputeShortestPath(): { while (U.TopKey() < CalcKey() OR rhs( )) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s); }
Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами
и , используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за . Улучшим эту оценку с помощью алгоритма D* lite.Примечание: на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку
.Алгоритм D*
Пока что был описан только алгоритм LPA*. Он способен неоднократно определять кратчайшее расстояние между начальной и конечной вершинами при любом изменении данного графа. Его первоначальный поиск полностью совпадает с алгоритмом A*, но последующие итерации способны использовать информацию из предыдущих поисков.
Постановка задачи
Теперь на основе LPA* опишем алгоритм D*, который способен определять расстояние между текущей вершиной
, в которой, допустим, находится курсор/робот, и конечной вершиной при каждом изменении графа в то время, как наш робот движется вдоль найденного пути.Описание
Опишем первую версию алгоритма D*. Очевидно, что большинство вершин в процессе движения робота остаются неизменными, поэтому мы можем применить алгоритм LPA*.
Примечание: Большинство функций переходят в данный алгоритм без изменений, поэтому опишем только измененные части.
Для начала мы поменяем направление поиска в графе.
Теперь функция g(s) хранит минимальное известное расстояние от
до . Свойства остаются прежними.Эвристическая функция h(s,s') теперь должна быть неотрицательная и обратно-устойчивая, т.е.
и для всех и . Очевидно, что при движении робота изменяется, поэтому данные свойства должны выполняться для всех .Дополнительное условие выхода также меняется, т.е. при
путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.Примечание: Так же следует отметить, что функция Initialize не обязана инициализировать абсолютно все вершины перед стартом алгоритма. Это важно, так как в на практике число вершин может быть огромным и только немногие будут пройдены робот в процессе движения. Так же это дает возможность добавления/удаления ребер без потери устойчивости всех подграфов данного графа.
Псевдокод (Первая версия)
При такой постановке задачи псевдокод не сильно меняется. Но функция Main все-таки претерпевает значительные изменения.
CalcKey(s): return [; ];
Initialize(): U =; for U.Insert( ; CalcKey( ));
UpdateVertex(u): if () rhs(u) = if ( ) U.Remove(u); if ( ) U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main(): Initialize(); ComputeShortestPath(); while () // if ( ) тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (если граф изменился) for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); for U.Update( ; CalcKey( )); ComputeShortestPath();