Декомпозиция Линдона — различия между версиями
Shersh (обсуждение | вклад) (→Алгоритм Дюваля: переписан алгоритм) |
Shersh (обсуждение | вклад) (→Корректность) |
||
Строка 115: | Строка 115: | ||
===Корректность=== | ===Корректность=== | ||
− | Покажем, что алгоритм получает нужное разложение. То есть все <tex>s_i</tex> - простые и <tex>s_1 \geqslant s_2 \geqslant ... \geqslant s_k</tex> лексикографически. | + | Покажем, что алгоритм получает нужное разложение. То есть все <tex>s_i</tex> {{---}} простые, и <tex>s_1 \geqslant s_2 \geqslant ... \geqslant s_k</tex> лексикографически. |
− | При обработке текущего символа в первом случае просто сдвигаем указатели, не записывая ответ. | + | При обработке текущего символа в первом случае просто сдвигаем указатели, не записывая ответ. Мы сравниваем символы в <tex> w </tex> и <tex> w' </tex> на одинаковых позициях, а <tex> w' </tex> {{---}} префикс <tex> w </tex>, поэтому инвариант сохраняется. |
− | + | Во втором случае объединяем все найденные <tex>w</tex> с <tex>w'</tex> и получем новую строку <tex>w''</tex>. | |
− | В третьем случае просто выведем все <tex>w</tex> и продолжим обработку со строки <tex>w'</tex>, так как при добавлении <tex>s[ | + | Покажем, что <tex>w''</tex> является простой. Рассмотрим ее суффикс. Если он начинается в середине <tex>w</tex>, сравним его посимвольно со строкой <tex>s_2</tex>, и тогда в каком-то символе он окажется больше <tex>s_2</tex>, так как суффикс <tex> w'' </tex> начинается с <tex> u </tex> {{---}} суффикса <tex>w</tex>, а строка <tex>w</tex> {{---}} простая и по определению меньше всех своих суффиксов. Если суффикс начинается в <tex>w'</tex>, то при сравнении расхождение будет в символах <tex>s[j]</tex> и <tex>s[k]</tex>. Но <tex>s[j] < s[k]</tex>, так что суффикс больше <tex>w''</tex>. Если же суффикс начинается с первой позиции какой-то подстроки <tex>w</tex>, то отбросим общий префикс вида <tex>w + w + ... + w</tex> и придем к предыдущему случаю. |
+ | |||
+ | В третьем случае просто выведем все <tex>w</tex> и продолжим обработку со строки <tex>w'</tex>, так как при добавлении <tex>s[k] </tex>, <tex>s_2</tex> перестанет удовлетворять требованиям, ведь в этом случае суффикс строки <tex> s_2 </tex> равный <tex> w'</tex> будет меньше <tex>w</tex>. | ||
Теперь покажем, что <tex>s_i \geqslant s_{i + 1}</tex>. | Теперь покажем, что <tex>s_i \geqslant s_{i + 1}</tex>. | ||
− | Последоваельность из <tex>w</tex> будет удовлетворять условию, так как эти строки равны. Следующее слово будет иметь общий префикс с <tex>w</tex>, а после него будет стоять символ, меньший следующего символа из <tex>w</tex> (новое <tex>w</tex> получается по третьему случаю). | + | Последоваельность из <tex>w</tex> будет удовлетворять условию, так как эти строки равны. Следующее слово будет иметь общий префикс с <tex>w</tex>, а после него будет стоять символ, меньший следующего символа из <tex>w</tex> (новое <tex>w</tex> получается по третьему случаю). |
===Асимптотика=== | ===Асимптотика=== |
Версия 21:05, 4 мая 2014
Декомпозиция Линдона была изобретена Роджером Линдоном (англ. Roger Lyndon) в 1954 году. Она используется для нахождения лексикографически минимального и максимального суффиксов строки, а также лексикографически минимального циклического сдвига.
Содержание
Основные определения
Определение: |
Простая строка — строка, которая лексикографически меньше любого своего суффикса. |
Примеры:
— простая строка, так как , , , .
— не простая строка, так как .
Определение: |
Декомпозиция Линдона (англ. Lyndon decomposition) строки | — её разложение , где строки просты, и при этом .
Существование и единственность
Лемма: |
1. 2. — простая |
Доказательство: |
1. Так как , то и ,2. Пусть — суффикс строки . Тогда рассмотрим 3 возможных случая:
|
Теорема (Чен-Линдон-Фокс): |
Можно построить декомпозицию Линдона любой строки , причем единственным образом. |
Доказательство: |
1. Существование. У каждой строки существует хотя бы одно разбиение на простые слова. Это следует из того, что отдельный символ является простым словом. Тогда среди всех разбиений строки на простые слова возьмём то, в котором меньше всего слов. Покажем, что это и будет декомпозицией Линдона данной строки. Предположим, что это не так. Значит, леммы следует, что эти слова можно сконкатенировать и получить разбиение строки на меньшее число слов. Получили противоречие. . Так как слова и простые, то из доказаннойТаким образом доказали даже более сильное утверждение: , — минимально нет2. Единственность. Пусть существует несколько разбиений , удовлетворяющих условию теоремы. Сравним длины первых двух слов и , если , сравним вторые и так далее. Если у всех слов длины одинаковы, то разбиения совпадают — противоречие. Иначе .Покажем, что такого не может быть: 1) Пусть , тогда , где — префикс , . Тогда получаем:
Пришли к противоречию: .2) Случай То есть не может быть строк симметричен разобранному. несовпадающей длины, значит, разбиения равны. |
Алгоритм Дюваля
Алгоритм
Алгоритм Дюваля (англ. Duval's algorithm) находит для данной строки длины
декомпозицию Линдона за время с использованием дополнительной памяти. Он строит декомпозицию только на упорядоченных алфавитах.
Определение: |
Предпростая строка — строка | , такая что , где — некоторая простая строка, а — некоторый префикс строки .
Во время работы алгоритма строка представляется в виде конкатенации трёх строк , где для строки декомпозиция Линдона уже найдена, и уже больше не используется алгоритмом; строка — это предпростая строка; строка — ещё не обработанная алгоритмом часть строки . Алгоритм Дюваля берёт первый символ строки и пытается дописать его к строке . При этом, возможно, для какого-то префикса строки декомпозиция Линдона становится известной, и эта часть переходит к строке .
Будем поддерживать три указателя:
- — на начало строки
- — на текущий символ в строке , с которым будет производиться сравнение
- — на начало строки
Внешний цикл алгоритма будет выполняться, пока
, то есть пока вся строка не перейдёт в строку . Внутри этого цикла создаются два указателя и . Затем будем пытаться добавить символ к строке , для чего необходимо произвести сравнение с символом . При этом будем поддерживать инвариант: — длина подстроки .Возникают три различных случая:
- тогда дописывыем символ к строке .
- тогда строка станет простой. Значит, мы увеличим на единицу, а передвигаем обратно на , чтобы следующий символ сравнивался с первым символом . То есть получаем новую простую строку длины .
- значит, строка уже не может быть предпростой. Добавляем к все строки , а по нашему инварианту мы знаем, что их длина равна , затем сдвигаем к началу позиции строки . После чего внешний цикл запускаем заново:
Реализация
function lyndon(string s, string[] decomposition): n|s| i 0 cur 0 while i n: j i k i + 1 while k n and s[j] s[k]: if s[j] s[k]: j i else: j k + 1 k k + 1 while i j: decomposition[cur] s[i..k - j] cur cur + 1 i i + k - j
Корректность
Покажем, что алгоритм получает нужное разложение. То есть все
— простые, и лексикографически.При обработке текущего символа в первом случае просто сдвигаем указатели, не записывая ответ. Мы сравниваем символы в
и на одинаковых позициях, а — префикс , поэтому инвариант сохраняется.Во втором случае объединяем все найденные
с и получем новую строку .Покажем, что
является простой. Рассмотрим ее суффикс. Если он начинается в середине , сравним его посимвольно со строкой , и тогда в каком-то символе он окажется больше , так как суффикс начинается с — суффикса , а строка — простая и по определению меньше всех своих суффиксов. Если суффикс начинается в , то при сравнении расхождение будет в символах и . Но , так что суффикс больше . Если же суффикс начинается с первой позиции какой-то подстроки , то отбросим общий префикс вида и придем к предыдущему случаю.В третьем случае просто выведем все
и продолжим обработку со строки , так как при добавлении , перестанет удовлетворять требованиям, ведь в этом случае суффикс строки равный будет меньше .Теперь покажем, что
.Последоваельность из
будет удовлетворять условию, так как эти строки равны. Следующее слово будет иметь общий префикс с , а после него будет стоять символ, меньший следующего символа из (новое получается по третьему случаю).Асимптотика
Дополнительная память требуется только на три указателя:
.Внешний цикл
делает не более итераций, поскольку в конце каждой его итерации к результату добавляется как минимум один символ (а всего символов ).Оценим теперь количество итераций первого вложенного цикла
. Для этого рассмотрим второй вложенный цикл — он при каждом своём запуске выводит некоторое количество копий одной и той же простой строки некоторой длины . Заметим, что строка является предпростой, причём её простые строки имеют длину как раз , т.е. её длина не превосходит . Поскольку длина строки равна , а указатель увеличивается по единице на каждой итерации первого вложенного цикла , то этот цикл выполнит не более итераций. Худшим случаем является случай , и мы получаем, что первый вложенный цикл всякий раз выполняет не более итераций. Вспоминая, что всего выводится символов, получаем, что для вывода символов требуется не более итераций первого вложенного . Следовательно, алгоритм Дюваля выполняется за .Легко оценить и число сравнений символов, выполняемых алгоритмом Дюваля. Поскольку каждая итерация первого вложенного цикла
производит два сравнения символов, а также одно сравнение производится после последней итерации цикла, то общее число сравнений символов не превосходит .