Вещественный двоичный поиск — различия между версиями
|  (→Способы закончить поиск) |  (→Способы закончить поиск) | ||
| Строка 13: | Строка 13: | ||
| ! Способы || Плюсы || Минусы   | ! Способы || Плюсы || Минусы   | ||
| |- | |- | ||
| − | | 1) Окончание, когда рассматриваемый отрезок станет меньше заданного эпсилон. ||  | + | | 1) Окончание, когда рассматриваемый отрезок станет меньше заданного эпсилон. || Заданная точность найденного значения. || Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел. У чисел есть точность. Соответственно, при больших значениях функции длина отрезка может никогда не уменьшиться до заданного значения. | 
| |- | |- | ||
| − | | 2) Окончание, когда значение функции на концах отрезках различается менее, чем на заданное эпсилон. ||  | + | | 2) Окончание, когда значение функции на концах отрезках различается менее, чем на заданное эпсилон. || Значение функции от найденного значения имеет заданную точность. || а) Возможна большая погрешность, если функция будет очень медленно возрастать. <br> б) Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел. У чисел есть точность. Соответственно, при быстром возрастании значений функции мы можем не найти такие границы, что значение на них различается менее, чем на заданное эпсилон  | 
| |- | |- | ||
| | 3) «Абсолютно точный поиск» <br> Окончание, когда границы отрезка — два соседних по представлению значения в типе данных. Утверждается, что два числа — соседние, если середина их отрезка совпадает или с левой, или с правой границей. || Максимально возможная точность найденного значения. || Возможно плохое поведение, если искомый аргумент равен 0. | | 3) «Абсолютно точный поиск» <br> Окончание, когда границы отрезка — два соседних по представлению значения в типе данных. Утверждается, что два числа — соседние, если середина их отрезка совпадает или с левой, или с правой границей. || Максимально возможная точность найденного значения. || Возможно плохое поведение, если искомый аргумент равен 0. | ||
Версия 22:54, 23 мая 2014
Вещественный двоичный поиск — алгоритм поиска аргумента для заданного значения монотонной вещественной функции.
Содержание
Формулировка задачи
Пусть нам задана монотонная функция. Необходимо найти значение аргумента этой функции, в которой она принимает определенное значение .
Решение задачи
Применим идею двоичного поиска. Выберем такие границы, где значение функции точно больше и точно меньше заданного значения. Выберем значение в середине этого отрезка. Если оно меньше, чем заданное, то сместим левую границу в середину отрезка. В противном случае сместим правую границу. Далее повторим процесс сужения границ. Встает вопрос, когда остановиться. Есть несколько способов сделать это.
Способы закончить поиск
| Способы | Плюсы | Минусы | 
|---|---|---|
| 1) Окончание, когда рассматриваемый отрезок станет меньше заданного эпсилон. | Заданная точность найденного значения. | Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел. У чисел есть точность. Соответственно, при больших значениях функции длина отрезка может никогда не уменьшиться до заданного значения. | 
| 2) Окончание, когда значение функции на концах отрезках различается менее, чем на заданное эпсилон. | Значение функции от найденного значения имеет заданную точность. | а) Возможна большая погрешность, если функция будет очень медленно возрастать. б) Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел. У чисел есть точность. Соответственно, при быстром возрастании значений функции мы можем не найти такие границы, что значение на них различается менее, чем на заданное эпсилон | 
| 3) «Абсолютно точный поиск» Окончание, когда границы отрезка — два соседних по представлению значения в типе данных. Утверждается, что два числа — соседние, если середина их отрезка совпадает или с левой, или с правой границей. | Максимально возможная точность найденного значения. | Возможно плохое поведение, если искомый аргумент равен 0. | 
| 4) «Итеративный способ» Выполнение конечного числа итераций. | У способа фиксированная погрешность. | Довольно плохая точность, если границы отрезка находятся на большом расстоянии. | 
Выбор границы отрезка для поиска
Для начала найдем правую границу. Выберем произвольную положительную точку (например ). Будем удваивать ее до тех пор, пока значение функции в этой точке меньше заданного. Для того, чтобы найти левую границу выберем произвольную отрицательную точку (например ). Будем удваивать ее до тех пор, пока значение в ней будет больше заданного значения.
Псевдокод
findLeft(c) 
    x = -1;
    while f(x) > c 
        x = x * 2;
    return x; 
findRight(c)
    x = 1;
    while f(x) < c
        x = x * 2;
    return x;
binSearch(c)
    left = findLeft(с);
    right = findRight(с);
    while left < right - eps                           //Здесь можно использовать другое условие выхода
        mid = (left + right) / 2;
        if f(mid) == c                                 //**
            return mid;                                //**
        else if f(mid) < c
            left = mid;
        else
            right = mid;
    return l;
Примеры использования
- Классической задачей на вещественный двоичный поиск является задача поиска корня -ой степени из числа : . При нижней границей для поиска будет , а верхней — .
- Если функция нестрого монотонна, то, убрав из приведенного выше алгоритма строки, отмеченные , мы получим алгоритм, который будет находить такой, что и .
Замечания
- Необходимо отметить, то функция должна быть строго монотонна, если мы ищем конкретный корень и он единственный. Нестрого монотонна, если нам необходимо найти самый левый (правый) аргумент. Если же функция не монотонна, то данный алгоритм не найдет искомый аргумент, либо найдет аргумент, но он не будет единственным.
- Важным отличием от целочисленного поиска является то, что мы передвигаем границу ровно в середину отрезка (), а не со смещением внутрь отрезка ().

