Теорема о циклах — различия между версиями
Shersh (обсуждение | вклад) |
Martoon (обсуждение | вклад) м |
||
Строка 17: | Строка 17: | ||
# От противного. Пусть <tex>D = (C_1 \cup C_2) \setminus p</tex> независимо. | # От противного. Пусть <tex>D = (C_1 \cup C_2) \setminus p</tex> независимо. | ||
#: Обозначим <tex>A = C_1 \cap C_2</tex>. Покажем, что <tex>|A| < |D|</tex>. Из предыдущего пункта очевидным образом следует, что <tex>|C_1 \setminus C_2| > 0</tex> и <tex>|C_2 \setminus C_1| > 0</tex>. | #: Обозначим <tex>A = C_1 \cap C_2</tex>. Покажем, что <tex>|A| < |D|</tex>. Из предыдущего пункта очевидным образом следует, что <tex>|C_1 \setminus C_2| > 0</tex> и <tex>|C_2 \setminus C_1| > 0</tex>. | ||
− | #: <tex>|D| = |C_1 \setminus C_2| + |C_2 \setminus C_1| + |A| - 1 \ | + | #: <tex>|D| = |C_1 \setminus C_2| + |C_2 \setminus C_1| + |A| - 1 \geqslant |A| + 1 + 1 - 1 = |A| + 1 > |A|.</tex> |
#: Отсюда путем многократного применения третьей аксиомы матроидов получим <tex>\exists B: A \subset B</tex> и <tex>|B| = |D|</tex>, причем <tex>B</tex> {{---}} независимо. | #: Отсюда путем многократного применения третьей аксиомы матроидов получим <tex>\exists B: A \subset B</tex> и <tex>|B| = |D|</tex>, причем <tex>B</tex> {{---}} независимо. | ||
#: Поскольку <tex>C_1</tex> {{---}} цикл, <tex>C_1 \nsubseteq B</tex>. Значит, найдется хотя бы один элемент в <tex>C_1 \setminus A</tex>, не лежащий в <tex>B</tex>. Следовательно в <tex>B</tex> лежит не более чем <tex>|C_1 \setminus A| - 1</tex> элементов из этого множества. Аналогично в <tex>B</tex> лежит не более чем <tex>|C_2 \setminus A| - 1</tex> элементов из множества <tex>C_2 \setminus A</tex>. | #: Поскольку <tex>C_1</tex> {{---}} цикл, <tex>C_1 \nsubseteq B</tex>. Значит, найдется хотя бы один элемент в <tex>C_1 \setminus A</tex>, не лежащий в <tex>B</tex>. Следовательно в <tex>B</tex> лежит не более чем <tex>|C_1 \setminus A| - 1</tex> элементов из этого множества. Аналогично в <tex>B</tex> лежит не более чем <tex>|C_2 \setminus A| - 1</tex> элементов из множества <tex>C_2 \setminus A</tex>. | ||
− | #: Получаем: <tex>|B| \ | + | #: Получаем: <tex>|B| \leqslant |A| + |C_1 \setminus A| - 1 + |C_2 \setminus A| - 1 = |C_1 \cup C_2| - 2 = |D| - 1</tex>. А поскольку <tex>|B| = |D|</tex> получаем противоречие. |
}} | }} | ||
Версия 17:53, 6 июня 2014
Определение: |
Циклом (англ. circuit) в матроиде называется множество, не являющееся независимым, каждое подмножество которого является независимым. |
Теорема (о циклах): |
Пусть — матроид и — семейство его циклов. Тогда:
|
Доказательство: |
|