Куча Бродала-Окасаки — различия между версиями
Nastya (обсуждение | вклад) |
Nastya (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Куча Бродала-Окасаки''' (англ. ''Brodal's and Okasaki's Priority Queue'') - основана на использовании [[Биномиальная куча|биномиальной кучи]] без каскадных ссылок, что позволяет делать <tex>insert</tex> за <tex>O(1)</tex>, добавлении минимального элемента, позволяет получать минимальный элемент за <tex>O(1)</tex>, и идеи Data-structural bootstrapping, позволяющей выполнить <tex>merge</tex> за <tex>O(1)</tex>. Удаление минимума работает за <tex>O(\log N)</tex> в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей. | + | '''Куча Бродала-Окасаки''' (англ. ''Brodal's and Okasaki's Priority Queue'') {{---}} основана на использовании [[Биномиальная куча|биномиальной кучи]] без каскадных ссылок, что позволяет делать <tex>insert</tex> за <tex>O(1)</tex>, добавлении минимального элемента, позволяет получать минимальный элемент за <tex>O(1)</tex>, и идеи Data-structural bootstrapping, позволяющей выполнить <tex>merge</tex> за <tex>O(1)</tex>. Удаление минимума работает за <tex>O(\log N)</tex> в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей. |
== Структура == | == Структура == | ||
Строка 5: | Строка 5: | ||
{{Определение | {{Определение | ||
|neat = 0 | |neat = 0 | ||
− | |definition= '''Data-structural bootstrapping''' - это идея, позволяющая снизить время <tex>merge</tex> до <tex>O(1)</tex> путем разрешения хранить в очереди другую очередь. | + | |definition= '''Data-structural bootstrapping''' {{---}} это идея, позволяющая снизить время <tex>merge</tex> до <tex>O(1)</tex> путем разрешения хранить в очереди другую очередь. |
}} | }} | ||
Строка 56: | Строка 56: | ||
return (y, merge(r, t)) | return (y, merge(r, t)) | ||
</pre> | </pre> | ||
− | Здесь <tex>extractMin(q)</tex> {{---}} это функция, извлекающая минимальный элемент типа BPQ из приоритетной очереди, она возвращает <tex>(y,r)</tex> - минимальный элемент типа BPQ и остаток от приоритетной очереди после извлечение минимума - <tex>t</tex>. <tex>merge</tex> {{---}} функция, выполняющая слияние двух приоритетных очередей. | + | Здесь <tex>extractMin(q)</tex> {{---}} это функция, извлекающая минимальный элемент типа BPQ из приоритетной очереди, она возвращает <tex>(y,r)</tex> {{---}} минимальный элемент типа BPQ и остаток от приоритетной очереди после извлечение минимума {{---}} <tex>t</tex>. <tex>merge</tex> {{---}} функция, выполняющая слияние двух приоритетных очередей. |
Возвращаем BPQ, где <tex>y</tex> {{---}} новый минимальный элемент, и <tex>merge(r, t)</tex> приоритетная очередь без элемента <tex>y</tex>. | Возвращаем BPQ, где <tex>y</tex> {{---}} новый минимальный элемент, и <tex>merge(r, t)</tex> приоритетная очередь без элемента <tex>y</tex>. |
Версия 22:08, 10 июня 2014
Куча Бродала-Окасаки (англ. Brodal's and Okasaki's Priority Queue) — основана на использовании биномиальной кучи без каскадных ссылок, что позволяет делать за , добавлении минимального элемента, позволяет получать минимальный элемент за , и идеи Data-structural bootstrapping, позволяющей выполнить за . Удаление минимума работает за в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей.
Содержание
Структура
Используем идею, которую Тарьян и Буксбаум называют Data-structural bootstrapping.
Создадим структуру Bootstrapping Priority Queues, которая будет хранить пару из минимального элемента
и приоритетную очередь. Элементами приоритетной очереди будут Bootstrapping Priority Queues упорядоченные по . Это можно записать так:
Куча из одного элемента будет выглядеть так
Данная структура не будет бесконечной, так как каждый раз в приоритетной очереди будет храниться на один элемент меньше, таким образом образуя иерархическую структуру. Каждое значение храниться в одном из значений
.Операции
Merge
Слияние выполняется выбором минимума из двух значений
и добавлением в приоритетную очередь второго BPQ.merge((x,q), (y,r)) if x<y return (x, insert(q, (y,r))) else return (y, insert(r, (x,q)))
Здесь
это добавление в приоритетную очередь работает за , тогда работает за .Insert
Это создание нового BPQ и
его с основным деревом.insert((x,q), y) return merge((x,q), create(y))
Создание и
выполняются за , тогда работает за .getMin
Выполняется просто, так как BPQ хранит минимум.
getMin((x,q)) return x;
Очевидно, работает за
extractMin
Минимальный элемент хранится в верхнем BPQ, по этому его поиск не нужен. Требуется извлечение минимума из приоритетной очереди BPQ'ов.
extractMin((x,q)) ((y,r), t) = extractMin(q) return (y, merge(r, t))
Здесь
— это функция, извлекающая минимальный элемент типа BPQ из приоритетной очереди, она возвращает — минимальный элемент типа BPQ и остаток от приоритетной очереди после извлечение минимума — . — функция, выполняющая слияние двух приоритетных очередей.Возвращаем BPQ, где
— новый минимальный элемент, и приоритетная очередь без элемента .Так как
и выполняются за , тогда выполняется за .