Изменения
→Поиск лексикографически минимального суффикса строки
{{Лемма
|id=lemma
|author=1
|statement= Минимальный суффикс <tex>T[i..j]</tex> равен либо <tex>T[p..j]</tex>, где <tex>p</tex>-начальная позиция минимального суффикса в <tex>Suf[i,j]</tex>, либо минимальному суффиксу <tex>|S^{\alpha(i,j)}_{j}|</tex>. Более того, <tex>p</tex> может быть найдено за константное время с использованием
|proof= По лемме 1 из [http://link.springer.com/chapter/10.1007/978-3-642-38905-4_5#page-1 1] минимальный суффикс равен либо <tex>T[p..j]</tex>, либо его кратчайшему непустому бордеру. Более того, в последнем случае длина минимального суффикса равна не превышает <tex>\displaystyle \frac{1}{2}|T[p..j]|\leq\frac{1}{2}|T[i..j]|</tex>. С другой стороны, по второму свойству канониеских подстрок, длина <tex>S_{j}^{\alpha(i,j)}</tex> равна как минимум <tex>\displaystyle \frac{1}{2}|T[i..j]|</tex>. Таким образом, во втором случае минимальный суффикс <tex>T[i..j]</tex> является минимальным суффиксом <tex>S_{j}^{\alpha(i,j)}</tex>. Заметим, что для <tex>i=j</tex> значения <tex>\alpha(i,\ j)</tex> не определены, но тогда выполняется первый случай из условия леммы. Чтобы доказать финальное выражение, вспомним, что нахождение минимального суффикса <tex>Suf [i,\ j]</tex> - одна из базовых операций, поддерживаемых улучшенным суфмассивом.