Мост, эквивалентные определения — различия между версиями
м |
|||
Строка 1: | Строка 1: | ||
− | Пусть < | + | Пусть <tex> G </tex> - связный граф. |
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (1) Мост графа < | + | (1) Мост графа <tex>G</tex> - ребро, соединяющее как минимум две компоненты реберной двусвязности <tex>G</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (2) Мост графа < | + | (2) Мост графа <tex>G</tex> - ребро, при удалении которого граф <tex>G</tex> становится несвязным. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (3) Ребро < | + | (3) Ребро <tex>x</tex> является мостом графа <tex>G</tex>, если в <tex>G</tex> существуют такие вершины <tex>u</tex> и <tex>v</tex>, что любой простой путь между этими вершинами проходит через ребро <tex>x.</tex> |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (4) Ребро < | + | (4) Ребро <tex>x</tex> является мостом графа <tex>G</tex>, если существует разбиение множества вершин <tex>V</tex> на такие множества <tex>U</tex> и <tex>W</tex>, что <tex>\forall u \in U</tex> и <tex>\forall w \in W</tex> ребро <tex>x</tex> принадлежит любому простому пути <tex>u \rightsquigarrow w</tex> |
}} | }} | ||
Строка 23: | Строка 23: | ||
|statement = Определения (1), (2), (3) и (4) эквивалентны. | |statement = Определения (1), (2), (3) и (4) эквивалентны. | ||
|proof = | |proof = | ||
− | < | + | <tex>(1) \Rightarrow (2)</tex> Пусть ребро <tex>x</tex> соединяет вершины <tex>a</tex> и <tex>b</tex>. Пусть граф <tex> G - {x} </tex> - связный. Тогда между вершинами <tex>a</tex> и <tex>b</tex> существует еще один путь, т.е. между вершинами <tex>a</tex> и <tex>b</tex> существуют два реберно не пересекающихся пути. Но тогда ребро <tex>x</tex> не является мостом графа <tex>G</tex>. Противоречие. |
− | < | + | <tex>(2) \Rightarrow (4)</tex> В условиях определения (4) пусть существует такие вершины <tex>u</tex> и <tex>w</tex>, что между ними существует простой путь <tex>P: x \notin P</tex>. Но тогда граф <tex>G - {x}</tex> - связный. Противоречие. |
− | < | + | <tex>(4) \Rightarrow (3)</tex> Возьмем <tex>\forall u \in U</tex> и <tex>\forall w \in W </tex>. Тогда <tex>\forall</tex> простой путь <tex>u \rightsquigarrow w</tex> содержит ребро <tex>x</tex>. Утверждение доказано |
− | < | + | <tex>(3) \Rightarrow (1)</tex> Пусть <tex>(a, b) = x</tex>. Пусть ребро <tex>x</tex> не является мостом по определению (1). |
− | Тогда между вершинами < | + | Тогда между вершинами <tex>a</tex> и <tex>b</tex> есть простой путь <tex>P = (a \rightsquigarrow b) : P \land x = \varnothing</tex>. Составим такой путь <tex>Q</tex>, что <tex>Q = ((u \rightsquigarrow w) \lor P) - x</tex>. Заметим, что он будет без разрывов. Сделаем путь <tex>Q</tex> простым (пройти по пути <tex>Q</tex>, удаляя все повторяющиеся вершины). Получим простой путь <tex>(u \rightsquigarrow w)</tex>, не проходящий по ребру <tex>x</tex>. Противоречие. |
}} | }} | ||
== См.также == | == См.также == | ||
[[Точка сочленения, эквивалентные определения]] | [[Точка сочленения, эквивалентные определения]] |
Версия 23:53, 13 октября 2010
Пусть
- связный граф.Определение: |
(1) Мост графа | - ребро, соединяющее как минимум две компоненты реберной двусвязности .
Определение: |
(2) Мост графа | - ребро, при удалении которого граф становится несвязным.
Определение: |
(3) Ребро | является мостом графа , если в существуют такие вершины и , что любой простой путь между этими вершинами проходит через ребро
Определение: |
(4) Ребро | является мостом графа , если существует разбиение множества вершин на такие множества и , что и ребро принадлежит любому простому пути
Теорема: |
Определения (1), (2), (3) и (4) эквивалентны. |
Доказательство: |
Пусть ребро соединяет вершины и . Пусть граф - связный. Тогда между вершинами и существует еще один путь, т.е. между вершинами и существуют два реберно не пересекающихся пути. Но тогда ребро не является мостом графа . Противоречие. В условиях определения (4) пусть существует такие вершины и , что между ними существует простой путь . Но тогда граф - связный. Противоречие. Возьмем и . Тогда простой путь содержит ребро . Утверждение доказано Тогда между вершинами Пусть . Пусть ребро не является мостом по определению (1). и есть простой путь . Составим такой путь , что . Заметим, что он будет без разрывов. Сделаем путь простым (пройти по пути , удаляя все повторяющиеся вершины). Получим простой путь , не проходящий по ребру . Противоречие. |