Алгоритм Ландау-Вишкина (k несовпадений) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «==Постановка задачи== Дано число <tex>k > 0</tex> текст <tex>y[1...n]</tex> и образец <tex>x[1...m]</tex>, <tex>m < n</tex>....»)
 
Строка 3: Строка 3:
  
 
==Основная идея==
 
==Основная идея==
При анализе текста используется двумерный массив <tex>tm[0...n-m][1...k+1]</tex>, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его <tex>i</tex>-й строке содержатся позиции в <tex>x</tex> первых <tex>k+1</tex> несовпадений между строками <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>.
+
При анализе текста используется двумерный массив <tex>tm[0...n-m][1...k+1]</tex>, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его <tex>i</tex>-й строке содержатся позиции в <tex>x</tex> первых <tex>k+1</tex> несовпадений между строками <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>. Таким образом, если <tex>tm[i][v] = s</tex>, то <tex>y[i+s]</tex> =/= <tex>x[s]</tex>, и это <tex>v</tex>-е несовпадение между <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>, считая слева направо. Если число <tex>d</tex> несовпадений <tex>x[1...m]</tex> с подстрокой <tex>y[i+1...i+m]</tex> меньше <tex>k+1</tex>, то, начиная с <tex>d+1</tex>, элементы <tex>i</tex>-й строки равны значению по умолчанию <tex>m+1</tex>.

Версия 22:18, 14 июня 2014

Постановка задачи

Дано число [math]k \gt 0[/math] текст [math]y[1...n][/math] и образец [math]x[1...m][/math], [math]m \lt n[/math]. Требуется найти все подстроки текста длины [math]m[/math], с не более чем [math]k[/math] несовпадающими символами.

Основная идея

При анализе текста используется двумерный массив [math]tm[0...n-m][1...k+1][/math], содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его [math]i[/math]-й строке содержатся позиции в [math]x[/math] первых [math]k+1[/math] несовпадений между строками [math]x[1...m][/math] и [math]y[i+1...i+m][/math]. Таким образом, если [math]tm[i][v] = s[/math], то [math]y[i+s][/math] =/= [math]x[s][/math], и это [math]v[/math]-е несовпадение между [math]x[1...m][/math] и [math]y[i+1...i+m][/math], считая слева направо. Если число [math]d[/math] несовпадений [math]x[1...m][/math] с подстрокой [math]y[i+1...i+m][/math] меньше [math]k+1[/math], то, начиная с [math]d+1[/math], элементы [math]i[/math]-й строки равны значению по умолчанию [math]m+1[/math].