Алгоритм Ландау-Вишкина (k несовпадений) — различия между версиями
Margarita (обсуждение | вклад) |
Margarita (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
При анализе текста используется двумерный массив <tex>tm[0...n-m][1...k+1]</tex>, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его <tex>i</tex>-й строке содержатся позиции в <tex>x</tex> первых <tex>k+1</tex> несовпадений между строками <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>. Таким образом, если <tex>tm[i][v] = s</tex>, то <tex>y[i+s] \neq x[s]</tex>, и это <tex>v</tex>-е несовпадение между <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>, считая слева направо. Если число <tex>d</tex> несовпадений <tex>x[1...m]</tex> с подстрокой <tex>y[i+1...i+m]</tex> меньше <tex>k+1</tex>, то, начиная с <tex>d+1</tex>, элементы <tex>i</tex>-й строки равны значению по умолчанию <tex>m+1</tex>. | При анализе текста используется двумерный массив <tex>tm[0...n-m][1...k+1]</tex>, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его <tex>i</tex>-й строке содержатся позиции в <tex>x</tex> первых <tex>k+1</tex> несовпадений между строками <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>. Таким образом, если <tex>tm[i][v] = s</tex>, то <tex>y[i+s] \neq x[s]</tex>, и это <tex>v</tex>-е несовпадение между <tex>x[1...m]</tex> и <tex>y[i+1...i+m]</tex>, считая слева направо. Если число <tex>d</tex> несовпадений <tex>x[1...m]</tex> с подстрокой <tex>y[i+1...i+m]</tex> меньше <tex>k+1</tex>, то, начиная с <tex>d+1</tex>, элементы <tex>i</tex>-й строки равны значению по умолчанию <tex>m+1</tex>. | ||
− | + | [[Файл:algLandauVishkin1.png|thumb|380px|right|...]] | |
Заметим, если <tex>tm[i][k+1] = m+1</tex>, то подстрока <tex>y[i+1...i+m]</tex> отличается от образца <tex>x</tex> не более, чем на <tex>k</tex> символов, и, таким образом, является решением задачи. | Заметим, если <tex>tm[i][k+1] = m+1</tex>, то подстрока <tex>y[i+1...i+m]</tex> отличается от образца <tex>x</tex> не более, чем на <tex>k</tex> символов, и, таким образом, является решением задачи. |
Версия 13:43, 15 июня 2014
Постановка задачи
Дано число
текст и образец , . Требуется найти все подстроки текста длины , с не более чем несовпадающими символами.Основная идея
При анализе текста используется двумерный массив
, содержащий информацию о несовпадениях текста с образцом. По завершении анализа в его -й строке содержатся позиции в первых несовпадений между строками и . Таким образом, если , то , и это -е несовпадение между и , считая слева направо. Если число несовпадений с подстрокой меньше , то, начиная с , элементы -й строки равны значению по умолчанию .Заметим, если
, то подстрока отличается от образца не более, чем на символов, и, таким образом, является решением задачи.
Затем образец сканируется параллельно с текстом слева на права по одному символу за раз. На итерации
с образцом сравнивается подстрока . - обозначим самую правую позицию в тексте, достигнутую за предыдущие итерации, то есть является максимальным из чисел , где //todo. Если , в присваивается результат работы , которая находит количество несовпадений между и . Если не превышает , вызывается процедура , которая сравнивает подстроки и . Переменная будет рассмотренна ниже.
tm[0...n-m][1...k+1] = m+1 // инициализация r = 0 j = 0 for i = 0 to n - m b = 0 if i < j b = merge(i, r, j) if b < k + 1 r = i extend(i, j, b)
|
и в случае несовпадения
увеличивается и таблица текстовых несовпадений обновляется. Если найдено несовпадений, обработка заканчивается, иначе найдено вхождение образца в подстроке .Пример
Пусть
, , . //todo tm //todo pm