Fusion tree — различия между версиями
Lena (обсуждение | вклад) (→Вычисление sketch(x)) |
Kamensky (обсуждение | вклад) м (XOR -> \oplus; едени* -> едини*) |
||
Строка 1: | Строка 1: | ||
− | '''Fusion tree''' {{---}} дерево поиска, позволяющее хранить <tex>n</tex> <tex>w</tex>-битных чисел, используя <tex>O(n)</tex> памяти, и выполнять операции поиска за время <tex>O(\log_{w} n)</tex>. Эта структура данных была впервые | + | '''Fusion tree''' {{---}} дерево поиска, позволяющее хранить <tex>n</tex> <tex>w</tex>-битных чисел, используя <tex>O(n)</tex> памяти, и выполнять операции поиска за время <tex>O(\log_{w} n)</tex>. Эта структура данных была впервые предложена в 1990 году М. Фредманом (M. Fredman) и Д. Уиллардом (D. Willard). |
==Структура== | ==Структура== | ||
Fusion tree {{---}} это [[B-дерево|B-дерево]], такое что: | Fusion tree {{---}} это [[B-дерево|B-дерево]], такое что: | ||
Строка 22: | Строка 22: | ||
Пусть <tex>\left \{ a_1,a_2\ldots a_k\right \}</tex> - множество ключей узла, отсортированных по возрастанию, <tex>q</tex> - ключ искомой вершины, <tex>l</tex> - количество бит в <tex>sketch(q)</tex>. Сначала найдем такой ключ <tex>a_i</tex>, что <tex>sketch(a_i) \leqslant sketch(q) \leqslant sketch(a_{i+1})</tex>. Но положение <tex>sketch(q)</tex> среди <tex>sketch(a_j)</tex> не всегда эквивалентно положению <tex>q</tex> среди <tex>a_j</tex>, поэтому, зная соседние элементы <tex>sketch(q)</tex>, найдем <tex>succ(q)</tex> и <tex>pred(q)</tex>. | Пусть <tex>\left \{ a_1,a_2\ldots a_k\right \}</tex> - множество ключей узла, отсортированных по возрастанию, <tex>q</tex> - ключ искомой вершины, <tex>l</tex> - количество бит в <tex>sketch(q)</tex>. Сначала найдем такой ключ <tex>a_i</tex>, что <tex>sketch(a_i) \leqslant sketch(q) \leqslant sketch(a_{i+1})</tex>. Но положение <tex>sketch(q)</tex> среди <tex>sketch(a_j)</tex> не всегда эквивалентно положению <tex>q</tex> среди <tex>a_j</tex>, поэтому, зная соседние элементы <tex>sketch(q)</tex>, найдем <tex>succ(q)</tex> и <tex>pred(q)</tex>. | ||
===Параллельное сравнение=== | ===Параллельное сравнение=== | ||
− | Найдем <tex>succ(sketch(q))</tex> и <tex>pred(sketch(q))</tex>. Определим <tex>sketch(node)</tex> как число, составленное из | + | Найдем <tex>succ(sketch(q))</tex> и <tex>pred(sketch(q))</tex>. Определим <tex>sketch(node)</tex> как число, составленное из единиц и <tex>sketch(a_i)</tex>, то есть <tex>sketch(node) = 1sketch(a_1)1sketch(a_2)\ldots 1scetch(a_k)</tex>. Вычтем из <tex>sketch(node)</tex> число <tex>shetch(q) \times \underbrace{\overbrace{00\ldots 1}^{l + 1 bits}\overbrace{00\ldots 1}^{l + 1 bits}\ldots \overbrace{00\ldots 1}^{l + 1 bits}}_{k(l + 1) bits} = 0sketch(q)\ldots 0sketch(q)</tex>. В начале каждого блока, где <tex>sketch(a_i) \geqslant sketch(q)</tex>, сохранятся единицы. Применим к получившемуся побитовое ''AND'' c <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}</tex>, чтобы убрать лишние биты. |
<tex>L = (1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))</tex> ''AND'' <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex> | <tex>L = (1sketch(a_1)\ldots 1scetch(a_k) - 0sketch(q)\ldots 0sketch(q))</tex> ''AND'' <tex>\displaystyle \sum_{i=0}^{k-1}2^{i(l+1)+l}=\overbrace{c_10\ldots0}^{l+1 bits} \ldots \overbrace{c_k0\ldots0}^{l+1 bits}</tex> | ||
Если <tex>sketch(a_i)< sketch(q)</tex>, то <tex>c_i = 0</tex>, в противном случае <tex>c_i = 1</tex>. | Если <tex>sketch(a_i)< sketch(q)</tex>, то <tex>c_i = 0</tex>, в противном случае <tex>c_i = 1</tex>. | ||
− | Теперь надо найти количество | + | Теперь надо найти количество единиц в ''L''. Умножим ''L'' на <tex>\underbrace{0\ldots 01}_{l + 1 bits}\ldots \underbrace{0\ldots 01}_{l+1 bits}</tex>, тогда все единицы сложатся в первом блоке результата, и, чтобы получить количество единиц, сдвинем его вправо. |
===Succ(q) и pred(q)=== | ===Succ(q) и pred(q)=== | ||
Строка 37: | Строка 37: | ||
|statement=Среди всех ключей наибольший общий префикс с <tex>q</tex> будет иметь или <tex>a_i</tex> или <tex>a_{i+1}</tex>. | |statement=Среди всех ключей наибольший общий префикс с <tex>q</tex> будет иметь или <tex>a_i</tex> или <tex>a_{i+1}</tex>. | ||
|proof= | |proof= | ||
− | + | Предположим, что <tex>y</tex> имеет наибольший общий префикс с <tex>q</tex>. Тогда <tex>sketch(q)</tex> будет иметь больше общих битов со <tex>sketch(y)</tex>. Значит, <tex>sketch(y)</tex> ближе по значению к <tex>sketch(q)</tex>, чем <tex>sketch(a_i)</tex> или <tex>sketch(a_{i+1})</tex>, что приводит к противоречию. | |
}} | }} | ||
− | Сравнивая <tex>a | + | Сравнивая <tex>a \oplus q</tex> и <tex>b \oplus q</tex>, найдем какой из ключей имеет наибольший общий префикс с <tex>q</tex> (наименьшее значение соответствует наибольшей длине). |
− | Предположим, что <tex>p</tex> - наибольший общий | + | Предположим, что <tex>p</tex> - наибольший общий префикс, а <tex>y</tex> его длина, <tex>a_j</tex> - ключ, имеющий наибольший общий префикс с <tex>q</tex> (<tex>j = i</tex> или <tex>i+1</tex>). |
− | * если <tex>q>a_j</tex>, то <tex>y + 1</tex> бит <tex>q</tex> равен | + | * если <tex>q>a_j</tex>, то <tex>y + 1</tex> бит <tex>q</tex> равен единице, а <tex>y + 1</tex> бит <tex>a_j</tex> равен нулю. Так как общий префикс <tex>a_j</tex> и <tex>q</tex> является наибольшим, то не существует ключа с префиксом <tex>p1</tex>. Значит, <tex>q</tex> больше всех ключей с префиксом меньшим либо равным <tex>p</tex>. Найдем <tex>pred(e)</tex>, <tex>e = p01\ldots 11</tex>, который одновременно будет <tex>равен pred(q)</tex>; |
* если <tex>q<a_j</tex> - найдем <tex>succ(e)</tex>, <tex>e = p10\ldots 00</tex>. Это будет <tex>succ(q)</tex>. | * если <tex>q<a_j</tex> - найдем <tex>succ(e)</tex>, <tex>e = p10\ldots 00</tex>. Это будет <tex>succ(q)</tex>. | ||
Строка 80: | Строка 80: | ||
==Индекс наиболее значащего бита== | ==Индекс наиболее значащего бита== | ||
− | Чтобы найти в w-битном числе <tex>x</tex> индекс самого старшего бита, содержащего | + | Чтобы найти в w-битном числе <tex>x</tex> индекс самого старшего бита, содержащего единицу, разделим <tex>x</tex> на <tex>\sqrt{w}</tex> блоков по <tex>\sqrt{w}</tex> бит. <tex>x = \underbrace{0101}_{\sqrt{w}}\; \underbrace{0000}_{\sqrt{w}}\; \underbrace{1000}_{\sqrt{w}}\; \underbrace{1101}_{\sqrt{w}}</tex>. Далее найдем первый непустой блок и индекс первого единичного бита в нем. |
'''1)''' Поиск непустых блоков. | '''1)''' Поиск непустых блоков. | ||
− | '''a.''' Определим, какие блоки имеют | + | '''a.''' Определим, какие блоки имеют единицу в первом бите. Применим побитовое ''AND'' к <tex>x</tex> и константе <tex>F</tex>. |
Строка 100: | Строка 100: | ||
− | '''b.''' Определим, содержат ли остальные биты | + | '''b.''' Определим, содержат ли остальные биты единицы. |
− | Вычислим <tex>x | + | Вычислим <tex>x \oplus t_1</tex>. |
Строка 121: | Строка 121: | ||
− | Вычтем | + | Вычтем из <tex>F\; t_2</tex>. Если какой-нибудь бит <tex>F</tex> обнулится, значит, соответствующий блок содержит единицы. |
Строка 140: | Строка 140: | ||
− | Чтобы найти блоки, содержащие | + | Чтобы найти блоки, содержащие единицы, вычислим <tex>t_3 \oplus F</tex>. |
Строка 159: | Строка 159: | ||
− | '''c.''' Первый бит в каждом блоке <tex>y = t_1</tex> ''OR'' <tex>t_4</tex> содержит | + | '''c.''' Первый бит в каждом блоке <tex>y = t_1</tex> ''OR'' <tex>t_4</tex> содержит единицу, если соответствующий блок <tex>x</tex> ненулевой. |
Строка 183: | Строка 183: | ||
Чтобы найти <tex>sketch(y)</tex>, умножим <tex>y</tex> на <tex>m</tex> и сдвинем вправо на <tex>w</tex> бит. | Чтобы найти <tex>sketch(y)</tex>, умножим <tex>y</tex> на <tex>m</tex> и сдвинем вправо на <tex>w</tex> бит. | ||
− | '''3)''' Найдем первый ненулевой блок. Для этого надо найти первую | + | '''3)''' Найдем первый ненулевой блок. Для этого надо найти первую единицу в <tex>sketch(y)</tex>. Как и при поиске <tex>succ(sketch(q))</tex> и <tex>pred(sketch(q))</tex> используем параллельное сравнение <tex>sketch(y)</tex> с <tex>2^0, 2^1 \ldots 2^{\sqrt{w} - 1}</tex>. В результате сравнения получим номер первого ненулевого блока <tex>c</tex>. |
− | '''4)''' Найдем номер <tex>d</tex> первого | + | '''4)''' Найдем номер <tex>d</tex> первого единичного бита в найденном блоке так же как и в предыдущем пункте. |
'''5)''' Индекс наиболее значащего бита будет равен <tex>c\sqrt{w}+d</tex>. | '''5)''' Индекс наиболее значащего бита будет равен <tex>c\sqrt{w}+d</tex>. |
Версия 04:24, 16 июня 2014
Fusion tree — дерево поиска, позволяющее хранить
-битных чисел, используя памяти, и выполнять операции поиска за время . Эта структура данных была впервые предложена в 1990 году М. Фредманом (M. Fredman) и Д. Уиллардом (D. Willard).Содержание
Структура
Fusion tree — это B-дерево, такое что:
- у всех вершин, кроме листьев, детей;
- время, за которое определяется, в каком поддереве находится вершина, равно .
Такое время работы достигается за счет хранения дополнительной информации в вершинах. Построим цифровой бор из ключей узла дерева. Всего
ветвящихся вершин. Биты, соответствующие уровням дерева, в которых происходит ветвление, назовем существенными и обозначим их номера . Количество существенных битов не больше чем .В Fusion tree вместе с ключом
хранится - последовательность битов .Утверждение: |
сохраняет порядок, то есть , если . |
Рассмотрим наибольший общий префикс | и . Тогда следующий бит определяет их порядок и одновременно является существенным битом. Поэтому, если , то и .
Поиск вершины
Пусть
- множество ключей узла, отсортированных по возрастанию, - ключ искомой вершины, - количество бит в . Сначала найдем такой ключ , что . Но положение среди не всегда эквивалентно положению среди , поэтому, зная соседние элементы , найдем и .Параллельное сравнение
Найдем
и . Определим как число, составленное из единиц и , то есть . Вычтем из число . В начале каждого блока, где , сохранятся единицы. Применим к получившемуся побитовое AND c , чтобы убрать лишние биты.AND
Если
, то , в противном случае . Теперь надо найти количество единиц в L. Умножим L на , тогда все единицы сложатся в первом блоке результата, и, чтобы получить количество единиц, сдвинем его вправо.Succ(q) и pred(q)
Пусть
.Утверждение: |
Среди всех ключей наибольший общий префикс с будет иметь или или . |
Предположим, что | имеет наибольший общий префикс с . Тогда будет иметь больше общих битов со . Значит, ближе по значению к , чем или , что приводит к противоречию.
Сравнивая
и , найдем какой из ключей имеет наибольший общий префикс с (наименьшее значение соответствует наибольшей длине).Предположим, что
- наибольший общий префикс, а его длина, - ключ, имеющий наибольший общий префикс с ( или ).- если , то бит равен единице, а бит равен нулю. Так как общий префикс и является наибольшим, то не существует ключа с префиксом . Значит, больше всех ключей с префиксом меньшим либо равным . Найдем , , который одновременно будет ;
- если - найдем , . Это будет .
Длина наибольшего общего префикса двух w-битных чисел
и может быть вычислена с помощью нахождения индекса наиболее значащего бита в побитовом XOR и .Вычисление sketch(x)
Чтобы найти sketch за константное время, будем вычислять
, имеющий все существенные биты в нужном порядке, но содержащий лишние нули.1) уберем все несущественные биты
AND ;2) умножением на некоторое заранее вычисленное число
сместим все существенные биты в блок меньшего размера.;
3) применив побитовое AND, уберем лишние биты, появившиеся в результате умножения;
AND ;
4) сделаем сдвиг вправо на
бит.Утверждение: |
Дана последовательность из чисел . Тогда существует последовательность , такая что:
1) все различны, для ;2) 3) ; . |
Выберем некоторые Чтобы получить , таким образом, чтобы . Предположим, что мы выбрали . Тогда . Всего недопустимых значений для , поэтому всегда можно найти хотя бы одно значение. , выбираем каждый раз наименьшее и прибавляем подходящее число кратное , такое что . |
Первые два условия необходимы для того, чтобы сохранить все существенные биты в нужном порядке. Третье условие позволит поместить sketch узла в w-битный тип. Так как
, то будет занимать бит.Индекс наиболее значащего бита
Чтобы найти в w-битном числе
индекс самого старшего бита, содержащего единицу, разделим на блоков по бит. . Далее найдем первый непустой блок и индекс первого единичного бита в нем.1) Поиск непустых блоков.
a. Определим, какие блоки имеют единицу в первом бите. Применим побитовое AND к
и константе .
b. Определим, содержат ли остальные биты единицы.
Вычислим
.
Вычтем из . Если какой-нибудь бит обнулится, значит, соответствующий блок содержит единицы.
Чтобы найти блоки, содержащие единицы, вычислим .
c. Первый бит в каждом блоке OR содержит единицу, если соответствующий блок ненулевой.
2) Найдем , чтобы сместить все нужные биты в один блок. Существенными битами в данном случае будут первые биты каждого блока, поэтому .
Будем использовать
. Тогда . Все суммы различны при . Все возрастают, и .Чтобы найти
, умножим на и сдвинем вправо на бит.3) Найдем первый ненулевой блок. Для этого надо найти первую единицу в
. Как и при поиске и используем параллельное сравнение с . В результате сравнения получим номер первого ненулевого блока .4) Найдем номер
первого единичного бита в найденном блоке так же как и в предыдущем пункте.5) Индекс наиболее значащего бита будет равен
.Каждый шаг выполняется за
, поэтому всего потребуется времени, чтобы найти индекс.Ссылки
MIT CS 6.897: Advanced Data Structures: Lecture 4, Fusion Trees, Prof. Erik Demaine (Spring 2003)