Матроид Вамоса — различия между версиями
(→Матроид Вамоса не представим ни над каким полем - доказательство) |
(→Матроид Вамоса не представим ни над каким полем - доказательство) |
||
Строка 22: | Строка 22: | ||
Множество <tex>\{x1, x2, x3, x4\}</tex> является базисом <tex>M</tex>. Запишем координаты каждого вектора в этом базисе: <tex>x_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})</tex>. Для дальнейшего нам понадобятся также векторы <tex>y_i = (a_{i1}, a_{i2}, 0, 0)</tex> и <tex>z_i = (0, 0, a_{i3}, a_{i4})</tex>, где <tex>i = 1, 2, {{...}} , 8</tex>. | Множество <tex>\{x1, x2, x3, x4\}</tex> является базисом <tex>M</tex>. Запишем координаты каждого вектора в этом базисе: <tex>x_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})</tex>. Для дальнейшего нам понадобятся также векторы <tex>y_i = (a_{i1}, a_{i2}, 0, 0)</tex> и <tex>z_i = (0, 0, a_{i3}, a_{i4})</tex>, где <tex>i = 1, 2, {{...}} , 8</tex>. | ||
Ввиду линейной зависимости векторов <tex>x1, x2, x5, x6</tex> получаем равенство нулю определителя, составленного из координат этих векторов: | Ввиду линейной зависимости векторов <tex>x1, x2, x5, x6</tex> получаем равенство нулю определителя, составленного из координат этих векторов: | ||
+ | |||
+ | <tex> \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a_{51} & a_{52} & a_{53} & a_{54} \\ a_{61} & a_{62} & a_{63} & a_{64} \end{vmatrix} = 0 </tex> | ||
+ | |||
+ | отсюда | ||
+ | |||
+ | <tex> \begin{vmatrix} a_{53} & a_{54} \\ a_{63} & a_{64} \end{vmatrix} = 0 </tex> | ||
+ | |||
+ | то есть векторы <tex>z_5</tex> и <tex>z_6</tex> линейно зависимы. Заметим, что вектор <tex>z_5</tex> ненулевой (иначе были бы линейно зависимыми векторы <tex>x_1, x_2, x_5</tex>, а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) <tex> \mu </tex> имеет место равенство <tex>z_6 = \mu z_5</tex>. Точно так же из линейной зависимости четвёрок векторов <tex>\{x_1, x_2, x_7, x_8\}, \{x_3, x_4, x_5, x_6\}, \{x_3, x_4, x_7, x_8\}</tex> получаем соответственно равенства <tex>z_8 = \beta z_7, y_6 = \lambda y_5, y_8 = \alpha y_7</tex>, где греческими буквами обозначены некоторые скаляры. | ||
== Источники информации == | == Источники информации == |
Версия 15:53, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьми элементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Содержание
Задание матроида
Пусть
. Матроид Вамоса удобно задать, назвав все его зависимые множества: это все подмножества , в которых не менее пяти элементов, а также .Доказательство матроидной природы
Сначала убедимся в том, что перед нами действительно матроид. Фактически нуждается в проверке лишь тот факт, что если
и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырtх элементов, отличающихся одним элементом.Свойства
- Все циклы матроида Вамоса имеют размер по меньшей мере равный его рангу(максимальный размер независимого множества).
- Матроид Вамоса изоморфен своему двойственному матроиду. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
- Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является матричным.
- Многочлен Татта матроида Вамоса равен
Матроид Вамоса не представим ни над каким полем - доказательство
Предположим, что существует изоморфный V векторный матроид
, где , и для каждого вектор соответствует элементу матроида Вамоса. Множество является базисом . Запишем координаты каждого вектора в этом базисе: . Для дальнейшего нам понадобятся также векторы и , где . Ввиду линейной зависимости векторов получаем равенство нулю определителя, составленного из координат этих векторов:
отсюда
то есть векторы
и линейно зависимы. Заметим, что вектор ненулевой (иначе были бы линейно зависимыми векторы , а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) имеет место равенство . Точно так же из линейной зависимости четвёрок векторов получаем соответственно равенства , где греческими буквами обозначены некоторые скаляры.