Матроид Вамоса — различия между версиями
(→Матроид Вамоса не представим ни над каким полем - доказательство) |
(→Матроид Вамоса не представим ни над каким полем - доказательство) |
||
Строка 35: | Строка 35: | ||
<tex> \begin{vmatrix} x_5 \\ x_6 \\ x_7 \\ x_8 \end{vmatrix} = \begin{vmatrix} y_5+z_5 \\ y_6+z_6 \\ y_7+z_7 \\ y_8+z_8 \end{vmatrix} = \begin{vmatrix} y_5+z_5 \\ \lambda y_5+ \mu z_5 \\ y_7+z_7 \\ \alpha y_7+ \beta z_7 \end{vmatrix} = \begin{vmatrix} y_5 \\ \mu z_5 \\ y_7 \\ \beta z_7 \end{vmatrix} + \begin{vmatrix} y_5 \\ \mu z_5 \\ z_7 \\ \alpha y_7 \end{vmatrix} + \begin{vmatrix} z_5 \\ \lambda y_5 \\ y_7 \\ \beta z_7 \end{vmatrix} + \begin{vmatrix} z_5 \\ \lambda y_5 \\ z_7 \\ \alpha y_7 \end{vmatrix} = </tex> | <tex> \begin{vmatrix} x_5 \\ x_6 \\ x_7 \\ x_8 \end{vmatrix} = \begin{vmatrix} y_5+z_5 \\ y_6+z_6 \\ y_7+z_7 \\ y_8+z_8 \end{vmatrix} = \begin{vmatrix} y_5+z_5 \\ \lambda y_5+ \mu z_5 \\ y_7+z_7 \\ \alpha y_7+ \beta z_7 \end{vmatrix} = \begin{vmatrix} y_5 \\ \mu z_5 \\ y_7 \\ \beta z_7 \end{vmatrix} + \begin{vmatrix} y_5 \\ \mu z_5 \\ z_7 \\ \alpha y_7 \end{vmatrix} + \begin{vmatrix} z_5 \\ \lambda y_5 \\ y_7 \\ \beta z_7 \end{vmatrix} + \begin{vmatrix} z_5 \\ \lambda y_5 \\ z_7 \\ \alpha y_7 \end{vmatrix} = </tex> | ||
+ | <tex> = \mu (\beta - \alpha) \begin{vmatrix} y_5 \\ z_5 \\ y_7 \\ z_7 \end{vmatrix} - \lambda ( \beta- \alpha) \begin{vmatrix} y_5 \\ z_5 \\ y_7 \\ z_7 \end{vmatrix} = ( \mu - \lambda)( \beta- \alpha) \begin{vmatrix} a_{51} & a_{52} & 0 & 0 \\ 0 & 0 & a_{53} & a_{54} \\ a_{71} & a_{72} & 0 & 0 \\ 0 & 0 & a_{73} & a_{74} \end{vmatrix} = </tex> | ||
== Источники информации == | == Источники информации == |
Версия 16:07, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьми элементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Содержание
Задание матроида
Пусть
. Матроид Вамоса удобно задать, назвав все его зависимые множества: это все подмножества , в которых не менее пяти элементов, а также .Доказательство матроидной природы
Сначала убедимся в том, что перед нами действительно матроид. Фактически нуждается в проверке лишь тот факт, что если
и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырtх элементов, отличающихся одним элементом.Свойства
- Все циклы матроида Вамоса имеют размер по меньшей мере равный его рангу(максимальный размер независимого множества).
- Матроид Вамоса изоморфен своему двойственному матроиду. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
- Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является матричным.
- Многочлен Татта матроида Вамоса равен
Матроид Вамоса не представим ни над каким полем - доказательство
Предположим, что существует изоморфный V векторный матроид
, где , и для каждого вектор соответствует элементу матроида Вамоса. Множество является базисом . Запишем координаты каждого вектора в этом базисе: . Для дальнейшего нам понадобятся также векторы и , где . Ввиду линейной зависимости векторов получаем равенство нулю определителя, составленного из координат этих векторов:
отсюда
то есть векторы
и линейно зависимы. Заметим, что вектор ненулевой (иначе были бы линейно зависимыми векторы , а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) имеет место равенство . Точно так же из линейной зависимости четвёрок векторов получаем соответственно равенства , где греческими буквами обозначены некоторые скаляры.Наконец, используем линейную зависимость векторов
. С помощью найденных соотношений будем преобразовывать определитель, составленный из координат этих векторов (при этом вместо строк определителя для наглядности записываем поначалу соответствующие векторы):