Матроид Вамоса — различия между версиями
(→Матроид Вамоса не представим ни над каким полем - доказательство) |
|||
Строка 14: | Строка 14: | ||
* Все циклы матроида Вамоса имеют размер по меньшей мере равный его [[Определение_матроида| рангу]](максимальный размер независимого множества). | * Все циклы матроида Вамоса имеют размер по меньшей мере равный его [[Определение_матроида| рангу]](максимальный размер независимого множества). | ||
* Матроид Вамоса изоморфен своему [[Двойственный_матроид | двойственному матроиду]]. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов. | * Матроид Вамоса изоморфен своему [[Двойственный_матроид | двойственному матроиду]]. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов. | ||
− | |||
* [[Многочлен_Татта | Многочлен Татта]] матроида Вамоса равен <math>x^4+4x^3+10x^2+15x+5xy+15y+10y^2+4y^3+y^4.</math> | * [[Многочлен_Татта | Многочлен Татта]] матроида Вамоса равен <math>x^4+4x^3+10x^2+15x+5xy+15y+10y^2+4y^3+y^4.</math> | ||
− | + | {{Теорема | |
+ | |statement=Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является [[Примеры_матроидов#.D0.9C.D0.B0.D1.82.D1.80.D0.B8.D1.87.D0.BD.D1.8B.D0.B9_.D0.BC.D0.B0.D1.82.D1.80.D0.BE.D0.B8.D0.B4|матричным]] | ||
+ | |proof= | ||
Предположим, что существует изоморфный V векторный матроид <tex>M = \langle E, J \rangle</tex>, где <tex>E = \{x1, x2, {{...}} , x8 \}</tex>, и для каждого <tex>i</tex> вектор <tex>x_i</tex> соответствует элементу <tex>i</tex> матроида Вамоса. | Предположим, что существует изоморфный V векторный матроид <tex>M = \langle E, J \rangle</tex>, где <tex>E = \{x1, x2, {{...}} , x8 \}</tex>, и для каждого <tex>i</tex> вектор <tex>x_i</tex> соответствует элементу <tex>i</tex> матроида Вамоса. | ||
Строка 43: | Строка 44: | ||
то есть векторы <tex>\{x3, x4, x5, x7\}</tex> линейно зависимы, что противоречит условию. | то есть векторы <tex>\{x3, x4, x5, x7\}</tex> линейно зависимы, что противоречит условию. | ||
+ | }} | ||
== Источники информации == | == Источники информации == |
Версия 16:25, 16 июня 2014
Матроид Вамоса или куб Вамоса — это матроид над восьми элементным множеством, который не изоморфен матричному ни над каким полем. Он назван в честь английского математика Питера Вамоса (Peter Vámos), который первым описал его в неопубликованной рукописи в 1968.
Задание матроида
Пусть
. Матроид Вамоса удобно задать, назвав все его зависимые множества: это все подмножества , в которых не менее пяти элементов, а также .Доказательство матроидной природы
Сначала убедимся в том, что перед нами действительно матроид. Фактически нуждается в проверке лишь тот факт, что если
и независимые множества и , , то в найдется такой элемент , что — независимое множество. Когда , это очевидно. В противном же случае множество содержит по меньшей мере два различных элемента. Обозначим их через и . Теперь осталось заметить, что из множеств и хотя бы одно независимое, так как по условию нет двух зависимых множеств из четырtх элементов, отличающихся одним элементом.Свойства
- Все циклы матроида Вамоса имеют размер по меньшей мере равный его рангу(максимальный размер независимого множества).
- Матроид Вамоса изоморфен своему двойственному матроиду. Однако он не самодвойственен, так как это требует нетривиальную перестановку элементов.
- Многочлен Татта матроида Вамоса равен
Теорема: |
Матроид Вамоса не представим ни над каким полем. Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса. То есть матроид Вамоса не является матричным |
Доказательство: |
Предположим, что существует изоморфный V векторный матроид , где , и для каждого вектор соответствует элементу матроида Вамоса. Множество является базисом . Запишем координаты каждого вектора в этом базисе: . Для дальнейшего нам понадобятся также векторы и , где . Ввиду линейной зависимости векторов получаем равенство нулю определителя, составленного из координат этих векторов:
отсюда
то есть векторы и линейно зависимы. Заметим, что вектор ненулевой (иначе были бы линейно зависимыми векторы , а у нас любые три вектора линейно независимые) . Поэтому для некоторого скаляра (то есть элемента числового поля, над которым рассматривается линейное пространство) имеет место равенство . Точно так же из линейной зависимости четвёрок векторов получаем соответственно равенства , где греческими буквами обозначены некоторые скаляры.Наконец, используем линейную зависимость векторов . С помощью найденных соотношений будем преобразовывать определитель, составленный из координат этих векторов (при этом вместо строк определителя для наглядности записываем поначалу соответствующие векторы):
Теперь заметим, что то есть векторы (в противном случае линейно зависимыми будут векторы и , а (иначе линейно зависимы векторы и ) . Поэтому равен нулю один из определителей или , например - первый из них. Но тогда линейно зависимы, что противоречит условию. |