Неотделимые множества — различия между версиями
| Строка 34: | Строка 34: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
| − | Существуют такие перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что | + | Существуют такие непересекающиеся перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \subset X</tex>, <tex>Y' \subset Y</tex>, <tex>X \cap Y = \O</tex>, <tex>X \cup Y = \mathbb{N}</tex>. Такие множества <tex>X'</tex> и <tex>Y'</tex> называют '''неотделимыми'''. |
|proof= | |proof= | ||
Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где <tex>f(n)</tex> - функция из леммы 2. | Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где <tex>f(n)</tex> - функция из леммы 2. | ||
Версия 23:56, 16 сентября 2014
| Лемма (1): |
Существует вычислимая функция, не имеющая всюду определенного вычислимого продолжения. |
| Доказательство: |
|
Рассмотрим функцию , где — универсальная функция. Предположим, у нее существует всюду определенное продолжение . Это значит, что и . По определению универсальной функции для некоторого . Тогда . Поскольку всюду определена, то . Значит, определено значение и . Получили противоречие. Таким образом, построенная функция не имеет всюду определенного вычислимого продолжения. |
| Лемма (2): |
Существует вычислимая функция, значения которой принадлежат множеству , не имеющая всюду определенного вычислимого продолжения. |
| Доказательство: |
|
Рассмотрим функцию Предположим, у нее существует всюду определенное продолжение . для некоторого . . Поскольку всюду определена, то и определено значение . Но по построению функции видим, что . Получили противоречие. |
| Теорема: |
Существуют такие непересекающиеся перечислимые множества и , что не существует таких разрешимых множеств и , что , , , . Такие множества и называют неотделимыми. |
| Доказательство: |
|
Рассмотрим множества и , где - функция из леммы 2. Пусть существуют и , удовлетворяющие указанным свойствам. Тогда вычислима характеристическая функция множества , то есть функция Заметим, что всюду определена и является продолжением , что противоречит лемме 2. |
Литература
- Верещагин, Шень. Вычислимые функции.