Основные определения теории графов — различия между версиями
Ilyal (обсуждение | вклад) (→Неориентированные графы) |
Ilyal (обсуждение | вклад) (→Ориентированные графы) |
||
Строка 38: | Строка 38: | ||
|id = def1 | |id = def1 | ||
|definition = | |definition = | ||
− | '''Ориентированным графом''' <tex>G</tex> называется четверка <tex>G = (V, E, \operatorname{beg}, \operatorname{end})</tex> , где <tex>V</tex> и <tex>E</tex> {{---}} некоторые множества, а <tex>\operatorname{beg}, \operatorname{end} : E \rightarrow V</tex>. | + | '''Ориентированным графом''' <tex>G</tex> называется четверка <tex>G = (V, E, \operatorname{beg}, \operatorname{end})</tex> , где <tex>V</tex> и <tex>E</tex> {{---}} некоторые множества, а <tex>\operatorname{beg}, \operatorname{end} : E \rightarrow V</tex>. Такой граф иногда называют '''псевдографом''' (англ. ''pseudograph''). |
}} | }} | ||
− | + | В псевдографе допускается соединять вершины более чем одним ребром. Такие ребра называются '''кратными''' (иначе {{---}} '''параллельные''', англ. ''multi-edge'', ''parallel edge''). Псевдограф без петель принято называть '''мультиграфом'''. | |
− | |||
{|border="0" cellpadding="5" width=30% align=center | {|border="0" cellpadding="5" width=30% align=center | ||
|[[Файл: Graph_definition_1.png|thumb|210px|center|<font color=#ff2a2a>Красным</font> выделено кратное ребро (6, 2)<br><font color=#3771c8>Синим</font> обозначена петля (6, 6)]] | |[[Файл: Graph_definition_1.png|thumb|210px|center|<font color=#ff2a2a>Красным</font> выделено кратное ребро (6, 2)<br><font color=#3771c8>Синим</font> обозначена петля (6, 6)]] |
Версия 19:01, 17 сентября 2014
Содержание
Ориентированные графы
Определение: |
Ориентированным графом (англ. directed graph) | называется пара , где — множество вершин (англ. vertices), а — множество рёбер.
Определение: |
Конечным графом (англ. finite graph) | называется граф, в котором множества и — конечны. Следует заметить, что большинство рассматриваевых нами графов — конечны.
Определение: |
Ребром (англ. edge, дугой (англ. arc), линией (англ. line)) ориентированного графа называют упорядоченную пару вершин | .
Определение: |
Изоморфные графы — два графа A и B называются изоморфными, если можно установить биекцию между их вершинами и соответствующими им ребрами. |
В графе ребро, концы которого совпадают, то есть , называется петлей (англ. loop).
Если имеется ребро
, то говорят:- — предок (англ. direct predecessor) .
- и — смежные (англ. adjacent)
- Вершина инцидентна ребру
- Вершина инцидентна ребру
Инцидентность — понятие, используемое только в отношении ребра и вершины. Две вершины или два ребра не могут быть инцидентны.
Граф с
вершинами и ребрами называют - графом. -граф называют тривиальным.Заметим, что по определению ориентированного графа, данному выше, любые две вершины
нельзя соединить более чем одним ребром . Поэтому часто используют другое определение.Определение: |
Ориентированным графом | называется четверка , где и — некоторые множества, а . Такой граф иногда называют псевдографом (англ. pseudograph).
В псевдографе допускается соединять вершины более чем одним ребром. Такие ребра называются кратными (иначе — параллельные, англ. multi-edge, parallel edge). Псевдограф без петель принято называть мультиграфом.
Также для ориентированных графов определяют полустепень исхода вершины (англ. outdegree)
и полустепень захода вершины (англ. indegree) .Стоит отметить, что для ориентированного графа справедлива лемма о рукопожатиях, связывающая количество ребер с суммой степеней вершин.
Неориентированные графы
Определение: |
Неориентированным графом (англ. undirected graph) | называется пара , где — множество вершин, а — множество рёбер.
Определение: |
Ребром в неориентированном графе называют неупорядоченную пару вершин | .
Иное определение:
Определение: |
Неориентированным графом | называется тройка , где — множество вершин, — множество ребер, а . Это определение, в отличие от предыдущего, позволяет задавать графы с кратными ребрами.
Степенью (англ. degree, valency) вершины в неориентированном графе называют число ребер, инцидентных . Будем считать, что петли добавляют к степени вершины .
Остальные определения в неориентированном графе совпадают с аналогичными определениями в ориентированном графе.
Представление графов
Матрица и списки смежности
Граф можно представить в виде матрицы смежности (adjacency matrix), где . Также в ячейке матрицы можно хранить вес ребра или их количество (если в графе разрешены паралелльные ребра). Для матрицы смежности существует теорема, позволяющая связать степень матрицы и количество путей из вершины в вершину .
Если граф разрежен (sparse graph,
, то есть, неформально говоря, в нем не очень много ребер. Формально говорить не получается, потому что везде разреженные графы определяются по-разному), его лучше представить в виде списков смежности, где список для вершины будет содержать вершины . Данный способ позволит сэкономить память, т.к. не придется хранить много нулей.Пути в графах
Определение: |
Путём (маршрутом, path) в графе называется последовательность вида | , где ; — длина пути.
Определение: |
Циклическим путём (closed walk) в ориентированном графе называется путь, в котором | .
Определение: |
Циклическим путём в неориентированном графе называется путь, в котором | , а так же .
Определение: |
Цикл (integral cycle) — это класс эквивалентности циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если ; где и — это две последовательности ребер в циклическом пути. |
Определение: |
Простой (вершинно-простой) путь — путь, в котором каждая из вершин графа встречается не более одного раза. |
Определение: |
Реберно-простой путь — путь, в котором каждое из ребер графа встречается не более одного раза. |
Определение: |
Длина пути — количество рёбер, входящих в последовательность, задающую этот путь. |
Часто используемые графы
Определение: |
— полный граф с вершинами. |
Определение: |
— двудольный граф с вершинами в одной доле и во второй. |
См. также
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
- Wolfram Mathworld: Graph