Алгоритм Прима — различия между версиями
(→Оценка производительности) |
|||
Строка 73: | Строка 73: | ||
== Оценка производительности == | == Оценка производительности == | ||
− | Производительность алгоритма Прима зависит от выбранной реализации приоритетной очереди, как и в | + | Производительность алгоритма Прима зависит от выбранной реализации приоритетной очереди, как и в алгоритме Дейкстры. Извлечение минимума выполняется <tex>V</tex> раз, релаксация — <tex>O(E)</tex> раз. |
{| border="1" cellpadding="5" cellspacing="0" style="text-align:center" width=30% | {| border="1" cellpadding="5" cellspacing="0" style="text-align:center" width=30% |
Версия 20:02, 10 октября 2014
Алгоритм Прима — алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе.
Содержание
Идея
Данный алгоритм очень похож на алгоритм Дейкстры. Будем последовательно строить поддерево ответа в графе , поддерживая приоритетную очередь из вершин , имеющую ключом для вершины величину (вес минимального ребра из вершин в вершину ). Также для каждой вершины очереди будем хранить — вершину , на которой достигается минимум в определении ключа. Дерево поддерживается неявно, и его ребра — это пары , где , а — корень . Изначально пусто, в очереди все вершины с ключами . Выберём произвольную вершину и присвоим её ключу . На каждом шаге будем извлекать минимальную вершину из приоритетной очереди и релаксировать все ребра , такие что , выполняя при этом операцию над очередью и обновление . Ребро при этом добавляется к ответу.
Реализация
произвольная вершина в и
Ребра дерева восстанавливаются из его неявного вида после выполнения алгоритма.
Пример
Задан неориентированный связный граф, требуется построить в нём минимальное остовное дерево.
- Создадим новый граф, содержащий все вершины из заданного графа, но не содержащий рёбер.
- Этот новый граф будет ответом, его множество рёбер будет изменено по ходу выполнения алгоритма.
- Создадим новое множество вершин с внешними значениями - приоритетами, из которого будем извлекать минимум.
- Заполним все приоритеты этого множества бесконечностью.
- Выберем любую вершину, от которой будет начато построение минимального остовного дерева (в примере это вершина a).
- Установим приоритет этой вершины равный нулю.
Корректность
По поддерживаемым инвариантам после извлечения вершины лемме о безопасном ребре, оно безопасно. Алгоритм построения MST, добавляющий безопасные ребра, причём делающий это ровно раз, корректен.
( ) из ребро является ребром минимального веса, пересекающим разрез . Значит, поОценка производительности
Производительность алгоритма Прима зависит от выбранной реализации приоритетной очереди, как и в алгоритме Дейкстры. Извлечение минимума выполняется
раз, релаксация — раз.Структура данных для приоритетной очереди | Асимптотика времени работы |
---|---|
Наивная реализация | |
Двоичная куча | |
Фибоначчиева куча |
См. также
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — с.653 — 656.— ISBN 978-5-8459-0857-5 (рус.)