Алгоритм Прима — различия между версиями
(→Реализация) |
(→Идея) |
||
Строка 2: | Строка 2: | ||
== Идея == | == Идея == | ||
− | Данный алгоритм очень похож на [[алгоритм Дейкстры]]. Будем последовательно строить поддерево <tex>F</tex> ответа в графе <tex>G</tex>, поддерживая [[Дискретная_математика,_алгоритмы_и_структуры_данных#.D0.9F.D1.80.D0.B8.D0.BE.D1.80.D0.B8.D1.82.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D0.BE.D1.87.D0.B5.D1.80.D0.B5.D0.B4.D0.B8 | приоритетную очередь]] <tex>Q</tex> из вершин <tex>G \setminus F</tex>, в которой ключом для вершины <tex>v</tex> является <tex>\min\limits_{u \in V(F), uv \in E(G)}w(uv)</tex> — вес минимального ребра из вершин <tex>F</tex> в | + | Данный алгоритм очень похож на [[алгоритм Дейкстры]]. Будем последовательно строить поддерево <tex>F</tex> ответа в графе <tex>G</tex>, поддерживая [[Дискретная_математика,_алгоритмы_и_структуры_данных#.D0.9F.D1.80.D0.B8.D0.BE.D1.80.D0.B8.D1.82.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D0.BE.D1.87.D0.B5.D1.80.D0.B5.D0.B4.D0.B8 | приоритетную очередь]] <tex>Q</tex> из вершин <tex>G \setminus F</tex>, в которой ключом для вершины <tex>v</tex> является <tex>\min\limits_{u \in V(F), uv \in E(G)}w(uv)</tex> — вес минимального ребра из вершин <tex>F</tex> в вершины <tex>G \setminus F</tex>. Также для каждой вершины очереди будем хранить <tex>p(v)</tex> — вершину <tex>u</tex>, на которой достигается минимум в определении ключа. Дерево <tex>F</tex> поддерживается неявно, и его ребра — это пары <tex>\left(v,p(v)\right)</tex>, где <tex>v \in G \setminus \{r\} \setminus Q</tex>, а <tex>r</tex> — корень <tex>F</tex>. Изначально <tex>F</tex> пусто и значения ключей у всех вершин равны <tex>+\infty</tex>. Выберём произвольную вершину <tex>r</tex> и присвоим её ключу значение <tex>0</tex>. На каждом шаге будем извлекать минимальную вершину <tex>v</tex> из приоритетной очереди и релаксировать все ребра <tex>vu</tex>, такие что <tex>u \in Q</tex>, выполняя при этом операцию <tex>\text{decreaseKey}</tex> над очередью и обновление <tex>p(v)</tex>. Ребро <tex>\left(v,p(v)\right)</tex> при этом добавляется к ответу. |
== Реализация == | == Реализация == |
Версия 13:39, 12 октября 2014
Алгоритм Прима (англ. Prim's algorithm) — алгоритм поиска минимального остовного дерева (англ. minimum spanning tree, MST) во взвешенном неориентированном связном графе.
Содержание
Идея
Данный алгоритм очень похож на алгоритм Дейкстры. Будем последовательно строить поддерево ответа в графе , поддерживая приоритетную очередь из вершин , в которой ключом для вершины является — вес минимального ребра из вершин в вершины . Также для каждой вершины очереди будем хранить — вершину , на которой достигается минимум в определении ключа. Дерево поддерживается неявно, и его ребра — это пары , где , а — корень . Изначально пусто и значения ключей у всех вершин равны . Выберём произвольную вершину и присвоим её ключу значение . На каждом шаге будем извлекать минимальную вершину из приоритетной очереди и релаксировать все ребра , такие что , выполняя при этом операцию над очередью и обновление . Ребро при этом добавляется к ответу.
Реализация
//G - исходный граф
//w - весовая функция function primFindMST(): for v in V key[v] = p[v] = null r = произвольная вершина графа G key[r] = 0 Q.push(V) while not Q.isEmpty() v = Q.extractMin() for vu in E if u in Q and key[u] > w(v, u) p[u] = v key[u] = w(v, u) Q.decreaseKey(u, key[u])
Ребра дерева восстанавливаются из его неявного вида после выполнения алгоритма.
Сделать операцию для приоритетной очереди на двоичной куче немного проблематично, поэтому есть два варианта. Первый, написать приоритетную очередь на какой-то сложной куче, например, биноминальной. Второй, изменять значение ключа вершины, для которой вызвали , напрямую в массиве, в котором хранится куча, после чего делать процедуру просеивания вверх для этой вершины. Для быстрого доступа к позиции вершины в массиве, нужно дополнительно хранить указатель на эту позицию и не забывать его менять во время изменения кучи.
Пример
Рассмотрим работу алгоритма на примере графа. Пусть произвольно выбранная вершина — это вершина a.
Корректность
По поддерживаемым инвариантам после извлечения вершины лемме о безопасном ребре, оно безопасно. Алгоритм построения MST, добавляющий безопасные ребра, причём делающий это ровно раз, корректен.
( ) из ребро является ребром минимального веса, пересекающим разрез . Значит, поОценка производительности
Производительность алгоритма Прима зависит от выбранной реализации приоритетной очереди, как и в алгоритме Дейкстры. Извлечение минимума выполняется
раз, релаксация — раз.Структура данных для приоритетной очереди | Асимптотика времени работы |
---|---|
Наивная реализация | |
Двоичная куча | |
Фибоначчиева куча |
См. также
Источники информации
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн — Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — с.653 — 656.— ISBN 978-5-8459-0857-5 (рус.)
- Википедия — Алгоритм Прима
- Wikipedia — Prim's algorithm
- MAXimal :: algo :: Минимальное остовное дерево. Алгоритм Прима