Композиция отношений — различия между версиями
м |
м |
||
Строка 6: | Строка 6: | ||
}} | }} | ||
− | Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> - отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> - отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> - отношение "можно добраться из А в Б, сначала проехав на поезде, а потом на автобусе(только по одному разу)". | + | Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> - отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> - отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> - отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)". |
=Степень отношений= | =Степень отношений= |
Версия 19:39, 15 октября 2010
Определение: |
Композицией (произведением, суперпозицией) бинарных отношений | и называется такое отношение , что: .
Примером такого отношения может служить отношение на некотором множестве населенных пунктов - отношение "можно доехать на поезде", а - отношение "можно доехать на автобусе". Тогда отношение - отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)".
Степень отношений
Определение: |
Степень отношения
| , определяется следующим образом:
В связи с этим понятием, также вводятся обозначения:
Транзитивное замыкание отношения R
-Обратное отношение
Определение: |
Отношение | называют обратным для отношения , если:
Определение: |
Ядром отношения R называется отношение |
Свойства
- Ядро отношения R симметрично: