Решение уравнений в регулярных выражениях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Решение системы уравнений в регулярных выражениях)
Строка 1: Строка 1:
 
==Решение уравнений в регулярных выражениях==
 
==Решение уравнений в регулярных выражениях==
Пусть <tex>A</tex> — некий алфавит, <tex>\alpha,\,\beta</tex> — некие регулярные выражения над этим алфавитом.
+
Пусть <tex>A</tex> — некий алфавит, <tex>\alpha,\,\beta</tex> — некие регулярные выражения над этим алфавитом. X - некий язык к которому мы применяем эти регулярные выражения.
  
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Пусть уравнение имеет вид <tex>X = \alpha X + \beta \Rightarrow \, 1)</tex>  
+
Пусть уравнение имеет вид <tex> X = \alpha X + \beta \Rightarrow \, 1)</tex>  
 
если <tex>\varepsilon \notin \alpha </tex>, тогда <tex> \alpha^{*} \beta</tex> — единственное решение. <tex>2)</tex> если <tex>\varepsilon \in \alpha </tex>, тогда <tex> \alpha^{*}( \beta + L)</tex> — решение для <tex>\forall L</tex>
 
если <tex>\varepsilon \notin \alpha </tex>, тогда <tex> \alpha^{*} \beta</tex> — единственное решение. <tex>2)</tex> если <tex>\varepsilon \in \alpha </tex>, тогда <tex> \alpha^{*}( \beta + L)</tex> — решение для <tex>\forall L</tex>
 
|proof=
 
|proof=
<tex> 1) </tex> Пусть <tex>\varepsilon \notin \alpha </tex>. тогда <tex>\forall i: </tex> выражение <tex>\alpha^{i} \beta \subset X </tex> для <tex>\forall L \Rightarrow \alpha^{*} \beta \subset X </tex>. Пусть <tex>\exists z \in X, z\notin \alpha^{*} \beta: z</tex> — самое короткое. <tex>z=z_\alpha z', </tex> где <tex>z_\alpha \in \alpha \Rightarrow z_\alpha \notin \varepsilon \Rightarrow z'</tex> — короче <tex>z \Rightarrow z' \in \alpha^{*} \beta \Rightarrow z \in \alpha^{*} \beta \Rightarrow X = \alpha^{*} \beta </tex>  
+
<tex> 1) </tex> Пусть <tex>\varepsilon \notin \alpha </tex>. тогда <tex>\forall i: </tex> выражение <tex>\alpha^{i} \beta \subset X </tex> для <tex>\forall X</tex>, тогда <tex> \alpha^{*} \beta \subset X </tex>. Пусть существует<tex> z \in X,\, z\notin \alpha^{*} \beta</tex> такой, что <tex> z </tex> — самое короткое. <tex>z=z_\alpha z', </tex> где <tex>z_\alpha \in \alpha </tex>, тогда <tex> z_\alpha \notin \varepsilon \Rightarrow z'</tex> — короче <tex>z </tex>. Следовательно <tex> z' \in \alpha^{*} \beta \Rightarrow z \in \alpha^{*} \beta \Rightarrow X = \alpha^{*} \beta </tex>.
  
  

Версия 23:14, 15 октября 2010

Решение уравнений в регулярных выражениях

Пусть [math]A[/math] — некий алфавит, [math]\alpha,\,\beta[/math] — некие регулярные выражения над этим алфавитом. X - некий язык к которому мы применяем эти регулярные выражения.

Утверждение:
Пусть уравнение имеет вид [math] X = \alpha X + \beta \Rightarrow \, 1)[/math] если [math]\varepsilon \notin \alpha [/math], тогда [math] \alpha^{*} \beta[/math] — единственное решение. [math]2)[/math] если [math]\varepsilon \in \alpha [/math], тогда [math] \alpha^{*}( \beta + L)[/math] — решение для [math]\forall L[/math]
[math]\triangleright[/math]

[math] 1) [/math] Пусть [math]\varepsilon \notin \alpha [/math]. тогда [math]\forall i: [/math] выражение [math]\alpha^{i} \beta \subset X [/math] для [math]\forall X[/math], тогда [math] \alpha^{*} \beta \subset X [/math]. Пусть существует[math] z \in X,\, z\notin \alpha^{*} \beta[/math] такой, что [math] z [/math] — самое короткое. [math]z=z_\alpha z', [/math] где [math]z_\alpha \in \alpha [/math], тогда [math] z_\alpha \notin \varepsilon \Rightarrow z'[/math] — короче [math]z [/math]. Следовательно [math] z' \in \alpha^{*} \beta \Rightarrow z \in \alpha^{*} \beta \Rightarrow X = \alpha^{*} \beta [/math].


[math] 2)[/math] Пусть [math] \varepsilon \in \alpha[/math]. предположим, что [math] \alpha^{*}( \beta + \alpha) [/math] — решение, тогда [math] \alpha^{*}( \beta + \alpha) [/math] подходит в [math]X = \alpha X + \beta[/math]. Выберем в качестве [math]L[/math] любой язык.


[math]\Rightarrow \alpha^{*} ( \beta + L ) = \alpha \alpha^{*} ( \beta + L ) + \beta \alpha^{*} \beta + \alpha^{*} \alpha = \alpha^{+} \beta + \alpha^{*} L + \beta = \alpha^{*} \beta + \alpha^{*} L = \alpha^{*}( \beta + \alpha) [/math]. что и требовалось доказать
[math]\triangleleft[/math]

Решение системы уравнений в регулярных выражениях

Пусть система уравнений имеет вид


[math] \begin{cases} \alpha_{11} X_1 + \alpha_{12} X_2 + \dots + \alpha_{1n} X_n + \beta_1 = X_1 \\ \alpha_{21} X_1 + \alpha_{22} X_2 + \dots + \alpha_{2n} X_n + \beta_2 = X_2\\ \dots\\ \alpha_{n1} X_1 + \alpha_{n2} X_2 + \dots + \alpha_{nn} X_n + \beta_n = X_n \\ \end{cases} [/math]


метод решения выразим [math]x_1[/math] из первого уравнения и подставим во второе уравнение: [math] X_2 = ( \alpha_{21} \alpha_{11}^{*} \alpha_{12} +\alpha_{22} ) X_2 + \alpha_{21} \alpha_{11}^{*} \alpha_{13} X_3 + \dots + \alpha_{21} \alpha_{11}^{*} \alpha_{1n} X_n + \beta_2[/math]. Пусть [math] a =( \alpha_{21} \alpha_{11}^{*} \alpha_{12} +\alpha_{22} ) [/math], [math] b =\alpha_{21} \alpha_{11}^{*} \alpha_{13} X_3 + \dots + \alpha_{21} \alpha_{11}^{*} \alpha_{1n} X_n + \beta_2 [/math], тогда уравнение примет вид [math]X_2=a X_2 + b[/math]. его решением будет [math]a^{*} b[/math]. подставим в следующее уравнение выраженный [math]X_2[/math], далее выполняя схожие итерации получим уравнение [math]X_n = a' X_n + b'[/math], где [math] a'=f( \alpha_{11} \dots \alpha_{1n} \alpha_{2n} \dots \alpha_{nn} ),\, b'=g( \alpha_{11} \dots \alpha_{1n} \alpha_{2n} \dots \alpha_{nn} ) [/math], тогда [math]X_n= f^{*}( \alpha_{11} \dots \alpha_{1n} \alpha_{2n} \dots \alpha_{nn} )g( \alpha_{11} \dots \alpha_{1n} \alpha_{2n} \dots \alpha_{nn} )[/math]. далее подставляя в полученные в ходе итераций уравнения найденный [math] X_i [/math], обратной прогонкой найдем [math]X_1 \dots X_{n-1} [/math].