Коды антигрея — различия между версиями
Oxygen3 (обсуждение | вклад) |
Oxygen3 (обсуждение | вклад) |
||
Строка 46: | Строка 46: | ||
<code> | <code> | ||
'''function''' genBinAntiGray(n: '''int'''): | '''function''' genBinAntiGray(n: '''int'''): | ||
− | '''for''' i = 1 to 2 ** (n - 1) | + | '''for''' i = 1 '''to''' 2 ** (n - 1) |
v = getMirrorGray(i, n) | v = getMirrorGray(i, n) | ||
print(v) | print(v) | ||
Строка 56: | Строка 56: | ||
Обозначим за <tex>G_i</tex> — <tex>i</tex>-ый вектор в зеркальном коде Грея, <tex>\overline G_i</tex> — его инверсию. | Обозначим за <tex>G_i</tex> — <tex>i</tex>-ый вектор в зеркальном коде Грея, <tex>\overline G_i</tex> — его инверсию. | ||
Тогда вектора будут располагаться в таком порядке: | Тогда вектора будут располагаться в таком порядке: | ||
− | : | + | :<tex>\dots</tex> <br> |
:<tex>G_i</tex> <br> | :<tex>G_i</tex> <br> | ||
:<tex>\overline G_i</tex> <br> | :<tex>\overline G_i</tex> <br> | ||
Строка 62: | Строка 62: | ||
:<tex>\overline G_{i+1}</tex> <br> | :<tex>\overline G_{i+1}</tex> <br> | ||
:<tex>G_{i+2}</tex> <br> | :<tex>G_{i+2}</tex> <br> | ||
− | : | + | :<tex>\dots</tex> |
<tex>G_i</tex> и <tex>\overline G_i</tex> отличаются во всех битах. <br> | <tex>G_i</tex> и <tex>\overline G_i</tex> отличаются во всех битах. <br> | ||
Если <tex>G_i</tex> и <tex>G_{i+1}</tex> отличаются в <tex>k</tex>-ом бите, то инверсия <tex>G_i</tex> совпадает с <tex>G_{i+1}</tex> только в <tex>k</tex>-ом бите. То есть <tex>\overline G_i</tex> и <tex>G_{i+1}</tex> отличаются во всех позициях, кроме <tex>k</tex>-ой. | Если <tex>G_i</tex> и <tex>G_{i+1}</tex> отличаются в <tex>k</tex>-ом бите, то инверсия <tex>G_i</tex> совпадает с <tex>G_{i+1}</tex> только в <tex>k</tex>-ом бите. То есть <tex>\overline G_i</tex> и <tex>G_{i+1}</tex> отличаются во всех позициях, кроме <tex>k</tex>-ой. | ||
Строка 69: | Строка 69: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Троичный код антигрея''' {{---}} такое упорядочивание троичных векторов, что соседние отличаются во всех разрядах. | + | '''Троичный код антигрея''' (англ. ''Trinary Anti-Gray Code'') {{---}} такое упорядочивание троичных векторов, что соседние отличаются во всех разрядах. |
}} | }} | ||
В отличие от двоичного кода антигрея, здесь мы не сталкиваемся с проблемой однозначности "соседа" и можем привести такой код, соседние элементы которого будут отличаться во всех разрядах. | В отличие от двоичного кода антигрея, здесь мы не сталкиваемся с проблемой однозначности "соседа" и можем привести такой код, соседние элементы которого будут отличаться во всех разрядах. | ||
Строка 75: | Строка 75: | ||
=== Алгоритм генерации === | === Алгоритм генерации === | ||
− | Упорядочим все троичные вектора лексикографически. Тогда для первых <tex>3^{n-1}</tex> векторов будем выводить сначала сам этот вектор, потом <tex>2</tex> его поразрядных циклических сдвига (каждый отдельный бит увеличиваем на 1). | + | Упорядочим все троичные вектора лексикографически. Тогда для первых <tex>3^{n-1}</tex> векторов будем выводить сначала сам этот вектор, потом <tex>2</tex> его поразрядных циклических сдвига (каждый отдельный бит увеличиваем на <tex>1</tex>). |
<br>Например, если мы имеем вектор <tex>021</tex>, то вы выведем: <tex>021</tex>, <tex>102</tex>, <tex>210</tex>. | <br>Например, если мы имеем вектор <tex>021</tex>, то вы выведем: <tex>021</tex>, <tex>102</tex>, <tex>210</tex>. | ||
Строка 83: | Строка 83: | ||
<code> | <code> | ||
'''function''' genTernAntiGray(n: '''int'''): | '''function''' genTernAntiGray(n: '''int'''): | ||
− | '''for''' v = <000..0> to <022..2> // | + | '''for''' v = <000..0> '''to''' <022..2> <span style="color:Green">// троичные вектора длины <tex>n</tex> </span> |
− | '''for''' | + | '''for'''i = 0 '''to''' 2 |
print(v) | print(v) | ||
digitCircleShift(v) | digitCircleShift(v) | ||
Строка 136: | Строка 136: | ||
Обозначим <tex>i</tex>-ый троичный вектор как <tex>G_i^0</tex>, его первый и второй циклический сдвиги как <tex>G_i^1</tex> и <tex>G_i^2</tex> соответственно. Получаем вектора в следующем порядке: | Обозначим <tex>i</tex>-ый троичный вектор как <tex>G_i^0</tex>, его первый и второй циклический сдвиги как <tex>G_i^1</tex> и <tex>G_i^2</tex> соответственно. Получаем вектора в следующем порядке: | ||
− | : | + | :<tex>\dots</tex> <br> |
:<tex>G_i^0</tex> <br> | :<tex>G_i^0</tex> <br> | ||
:<tex>G_i^1</tex> <br> | :<tex>G_i^1</tex> <br> | ||
:<tex>G_i^2</tex> <br> | :<tex>G_i^2</tex> <br> | ||
:<tex>G_{i+1}^0</tex> <br> | :<tex>G_{i+1}^0</tex> <br> | ||
− | : | + | :<tex>\dots</tex> |
<tex >G_i^0</tex> и <tex>G_i^1</tex>, равно как <tex>G_i^1</tex> и <tex>G_i^2</tex>, отличаются во всех битах. <br> | <tex >G_i^0</tex> и <tex>G_i^1</tex>, равно как <tex>G_i^1</tex> и <tex>G_i^2</tex>, отличаются во всех битах. <br> | ||
Если говорить о векторах как о троичных числах, то <tex>G_{i+1}^0</tex> получено из <tex>G_i^0</tex> прибавлением единицы, это значит, что у <tex>G_{i+1}^0</tex> несколько разрядов справа на единицу больше (по модулю <tex>3</tex>), чем у <tex>G_i^0</tex> (по правилам сложения в столбик). С другой стороны <tex>G_{i}^2</tex> получено из <tex>G_{i}^0</tex> двумя циклическими сдвигами вперёд, что равносильно одному циклическому сдвигу назад. Таким образом, в числе <tex>G_{i+1}^0</tex> некоторые биты такие же, как в <tex>G_{i}^0</tex>, остальные на единицу больше; в числе <tex>G_{i}^2</tex> все биты на один меньше по сравнению с <tex>G_{i}^0</tex>, значит <tex>G_{i}^2</tex> и <tex>G_{i+1}^0</tex> различны во всех битах. | Если говорить о векторах как о троичных числах, то <tex>G_{i+1}^0</tex> получено из <tex>G_i^0</tex> прибавлением единицы, это значит, что у <tex>G_{i+1}^0</tex> несколько разрядов справа на единицу больше (по модулю <tex>3</tex>), чем у <tex>G_i^0</tex> (по правилам сложения в столбик). С другой стороны <tex>G_{i}^2</tex> получено из <tex>G_{i}^0</tex> двумя циклическими сдвигами вперёд, что равносильно одному циклическому сдвигу назад. Таким образом, в числе <tex>G_{i+1}^0</tex> некоторые биты такие же, как в <tex>G_{i}^0</tex>, остальные на единицу больше; в числе <tex>G_{i}^2</tex> все биты на один меньше по сравнению с <tex>G_{i}^0</tex>, значит <tex>G_{i}^2</tex> и <tex>G_{i+1}^0</tex> различны во всех битах. |
Версия 23:50, 21 ноября 2014
Определение: |
Код антигрея (англ. Anti-Gray Code) — такое упорядочивание расстояние Хэмминга между двумя соседними векторами максимально. | -ичных векторов, что
Код антигрея может использоваться для обнаружения неисправностей в устройстве при переходе в соседнее состояние. Часто используется в приборах, устанавливающихся на улице. Такое кодирование позволяет вовремя выявить поломку или какое-то загрязнение и своевременно устранить неисправность.
Содержание
Двоичный код антигрея
Определение: |
Двоичный код антигрея (англ. Binary Anti-Gray Code) — такое упорядочивание двоичных векторов длины | , что соседние отличаются не менее, чем в битах.
Заметим: упорядочивание векторов такое, что соседние отличаются во всех битах, возможно только для
. Это объясняется тем, что для двоичного вектора существует ровно один вектор, отличающийся во всех битах, а в последовательности, где , таких векторов должно быть два.Пример
n = 1 | n = 2 | n = 3 |
---|---|---|
0 | 00 | 000 |
1 | 11 | 111 |
01 | 001 | |
10 | 110 | |
011 | ||
100 | ||
010 | ||
101 |
Алгоритм генерации
Возьмем двоичный зеркальный код Грея размером . Тогда для первых двоичных векторов будем:
- Печатать двоичный вектор
- Печатать его инверсию
Утверждается, что с помощью данного алгоритма мы напечатаем двоичный код антигрея.
Псевдокод
function genBinAntiGray(n: int): for i = 1 to 2 ** (n - 1) v = getMirrorGray(i, n) print(v) inverseBits(v) print(v)
Доказательство корректности алгоритма
Обозначим за
— -ый вектор в зеркальном коде Грея, — его инверсию. Тогда вектора будут располагаться в таком порядке:
Если и отличаются в -ом бите, то инверсия совпадает с только в -ом бите. То есть и отличаются во всех позициях, кроме -ой.
Троичный код антигрея
Определение: |
Троичный код антигрея (англ. Trinary Anti-Gray Code) — такое упорядочивание троичных векторов, что соседние отличаются во всех разрядах. |
В отличие от двоичного кода антигрея, здесь мы не сталкиваемся с проблемой однозначности "соседа" и можем привести такой код, соседние элементы которого будут отличаться во всех разрядах.
Алгоритм генерации
Упорядочим все троичные вектора лексикографически. Тогда для первых
Например, если мы имеем вектор , то вы выведем: , , .
Утверждается, что выполняя эти действия мы получим троичный код антигрея.
Псевдокод
function genTernAntiGray(n: int):
for v = <000..0> to <022..2> // троичные вектора длины
fori = 0 to 2
print(v)
digitCircleShift(v)
Заметим, что данный алгоритм можно обобщить на случай
-ичного кода антигрея.Примеры работы алгоритма
n = 1 | n = 2 | n = 3 | ||||
---|---|---|---|---|---|---|
Первые векторов |
Коды антигрея | Первые векторов |
Коды антигрея | Первые векторов |
Коды антигрея | |
0 | 0 | 00 | 00 | 000 | 000 | 200 |
1 | 01 | 11 | 001 | 111 | 012 | |
2 | 02 | 22 | 002 | 222 | 120 | |
01 | 010 | 001 | 201 | |||
12 | 011 | 112 | 020 | |||
20 | 012 | 220 | 101 | |||
02 | 020 | 002 | 212 | |||
10 | 021 | 110 | 021 | |||
21 | 022 | 221 | 102 | |||
010 | 210 | |||||
121 | 022 | |||||
202 | 100 | |||||
011 | 211 | |||||
122 |
Доказательство корректности алгоритма
Обозначим
-ый троичный вектор как , его первый и второй циклический сдвиги как и соответственно. Получаем вектора в следующем порядке:
Если говорить о векторах как о троичных числах, то получено из прибавлением единицы, это значит, что у несколько разрядов справа на единицу больше (по модулю ), чем у (по правилам сложения в столбик). С другой стороны получено из двумя циклическими сдвигами вперёд, что равносильно одному циклическому сдвигу назад. Таким образом, в числе некоторые биты такие же, как в , остальные на единицу больше; в числе все биты на один меньше по сравнению с , значит и различны во всех битах.
Подобные рассуждения можно провести для любого -ичного кода антигрея, где .