Методы генерации случайного сочетания — различия между версиями
Daniil (обсуждение | вклад) (→Решение за время O(n2)) |
Daniil (обсуждение | вклад) (→Доказательство корректности алгоритма) |
||
| Строка 30: | Строка 30: | ||
===Доказательство корректности алгоритма=== | ===Доказательство корректности алгоритма=== | ||
| − | На первом шаге мы выбираем один элемент из <tex>n</tex>, на втором из <tex>n - 1</tex>, ..., на <tex>k</tex>-ом из <tex>n - k + 1</tex>. Тогда общее число исходов получится <tex>n \ | + | На первом шаге мы выбираем один элемент из <tex>n</tex>, на втором из <tex>n - 1</tex>, ..., на <tex>k</tex>-ом из <tex>n - k + 1</tex>. Тогда общее число исходов получится <tex>n \cdot (n - 1) \cdot ... \cdot (n - k + 1)</tex>. Это эквивалентно <tex dpi="180">{n! \over (n - k)!}</tex>. Однако заметим, что на этом шаге у нас получаются лишь размещения из <tex>n</tex> по <tex>k</tex>. Но все эти размещения можно сопоставить одному сочетанию, отсортировав их. И так как размещения равновероятны, и каждому сочетанию сопоставлено ровно <tex>k!</tex> размещений, то сочетания тоже генерируются равновероятно. |
==Решение за время O(n)== | ==Решение за время O(n)== | ||
Версия 20:16, 11 декабря 2014
Содержание
Постановка задачи
Необходимо сгенерировать случайное сочетание из элементов по с равномерным распределением вероятности, если есть в наличии функция для генерации случайного числа в заданном интервале.
Решение за время O(n2)
Пусть S — множество из n элементов, тогда для генерации случайного сочетания сделаем следующее:
- Выберем в множестве случайный элемент
- Добавим его в сочетание
- Удалим элемент из множества
Эту процедуру необходимо повторить раз.
Псевдокод
randomCombination(arrayOfElements, n, k)
for i = 1 to k
r = rand(1..(n - i + 1));
cur = 0;
for j = 1 to n
if exist[j]
cur++;
if cur == r
res[i] = arrayOfElements[j];
exist[j] = false;
sort(res);
return res;
Здесь — такой массив, что если , то элемент присутствует в множестве S.
Сложность алгоритма —
Доказательство корректности алгоритма
На первом шаге мы выбираем один элемент из , на втором из , ..., на -ом из . Тогда общее число исходов получится . Это эквивалентно . Однако заметим, что на этом шаге у нас получаются лишь размещения из по . Но все эти размещения можно сопоставить одному сочетанию, отсортировав их. И так как размещения равновероятны, и каждому сочетанию сопоставлено ровно размещений, то сочетания тоже генерируются равновероятно.
Решение за время O(n)
Для более быстрого решения данной задачи воспользуемся следующим алгоритмом: пусть задан для определенности массив размера , состоящий из единиц и нулей. Применим к нему алгоритм генерации случайной перестановки. Тогда все элементы , для которых , включим в сочетание.
Псевдокод
randomCombination(arrayOfElements, n, k)
for i = 1 to n
if i <= k
a[i] = 1;
else
a[i] = 0;
random_shuffle(a);
for i = 1 to n
if a[i] == 1
ans.push(arrayOfElement[i]);
return ans;
Доказательство корректности алгоритма
Заметим, что всего перестановок , но так как наш массив состоит только из 0 и 1, то перестановка только 0 или только 1 ничего в нем не меняет. Заметим, что число перестановок нулей равно , единиц — . Следовательно, всего уникальных перестановок — . Все они равновероятны, так как была сгенерирована случайная перестановка, а каждой уникальной перестановке сопоставлено ровно перестановок. Но — число сочетаний из по . То есть каждому сочетанию сопоставляется одна уникальная перестановка. Следовательно, генерация сочетания происходит также равновероятно.
Оценка временной сложности
Алгоритм состоит из 2 невложенных циклов по итераций каждый и функции генерации случайной перестановки , работающей за по алгоритму Фишера—Йетcа. Следовательно, сложность и всего алгоритма