Методы генерации случайного сочетания — различия между версиями
Daniil (обсуждение | вклад) (→Решение за время O(n ^ 2)) |
Daniil (обсуждение | вклад) (→Решение за время O(n ^ 2)) |
||
Строка 5: | Строка 5: | ||
Пусть <tex>S</tex> — множество из <tex>n</tex> элементов, тогда для генерации случайного сочетания сделаем следующее: | Пусть <tex>S</tex> — множество из <tex>n</tex> элементов, тогда для генерации случайного сочетания сделаем следующее: | ||
− | * | + | * выберем в множестве случайный элемент, |
− | * | + | * добавим его в сочетание, |
− | * | + | * удалим элемент из множества. |
Эту процедуру необходимо повторить <tex>k</tex> раз. | Эту процедуру необходимо повторить <tex>k</tex> раз. |
Версия 00:00, 16 декабря 2014
Содержание
Постановка задачи
Необходимо сгенерировать случайное сочетание из
элементов по с равномерным распределением вероятности, если есть в наличии функция для генерации случайного числа в заданном интервале.Решение за время
Пусть
— множество из элементов, тогда для генерации случайного сочетания сделаем следующее:- выберем в множестве случайный элемент,
- добавим его в сочетание,
- удалим элемент из множества.
Эту процедуру необходимо повторить
раз.Псевдокод
randomCombination(arrayOfElements, n, k) for i = 1 to k r = rand(1..(n - i + 1)); cur = 0; for j = 1 to n if exist[j] cur++; if cur == r res[i] = arrayOfElements[j]; exist[j] = false; sort(res); return res;
Здесь
— такой массив, что если , то элемент присутствует в множестве .Сложность алгоритма —
Доказательство корректности алгоритма
На первом шаге мы выбираем один элемент из
, на втором из , ..., на -ом из . Тогда общее число исходов получится . Это эквивалентно . Однако заметим, что на этом шаге у нас получаются лишь размещения из по . Но все эти размещения можно сопоставить одному сочетанию, отсортировав их. И так как размещения равновероятны, и каждому сочетанию сопоставлено ровно размещений, то сочетания тоже генерируются равновероятно.Решение за время
Для более быстрого решения данной задачи воспользуемся следующим алгоритмом: пусть задан для определенности массив алгоритм генерации случайной перестановки. Тогда все элементы , для которых , включим в сочетание.
размера , состоящий из единиц и нулей. Применим к немуПсевдокод
randomCombination(arrayOfElements, n, k) for i = 1 to n if i <= k a[i] = 1; else a[i] = 0; random_shuffle(a); for i = 1 to n if a[i] == 1 ans.push(arrayOfElement[i]); return ans;
Доказательство корректности алгоритма
Заметим, что всего перестановок
, но так как наш массив состоит только из и , то перестановка только или только ничего в нем не меняет. Заметим, что число перестановок нулей равно , единиц — . Следовательно, всего уникальных перестановок — . Все они равновероятны, так как была сгенерирована случайная перестановка, а каждой уникальной перестановке сопоставлено ровно перестановок. Но — число сочетаний из по . То есть каждому сочетанию сопоставляется одна уникальная перестановка. Следовательно, генерация сочетания происходит также равновероятно.Оценка временной сложности
Алгоритм состоит из 2 невложенных циклов по Фишера—Йетcа. Следовательно, сложность и всего алгоритма
итераций каждый и функции генерации случайной перестановки , работающей за по алгоритму