Использование обхода в глубину для поиска цикла — различия между версиями
(Форматирование псевдокода, замена тире, источники информации) |
|||
Строка 5: | Строка 5: | ||
== Алгоритм == | == Алгоритм == | ||
− | Произведём серию поисков в глубину в графе. Т.е. из каждой вершины, в которую мы ещё ни разу не приходили, запустим поиск в глубину, который при входе в вершину будет красить её в серый цвет, а при выходе - в чёрный. И если поиск в глубину пытается пойти в серую вершину, то это означает, что мы нашли цикл. | + | Произведём серию поисков в глубину в графе. Т.е. из каждой вершины, в которую мы ещё ни разу не приходили, запустим поиск в глубину, который при входе в вершину будет красить её в серый цвет, а при выходе {{---}} в чёрный. И если поиск в глубину пытается пойти в серую вершину, то это означает, что мы нашли цикл. |
Сам цикл можно восстановить проходом по массиву предков. | Сам цикл можно восстановить проходом по массиву предков. | ||
− | [[Файл: Dfs_cycle.png|thumb|200px|right| Момент нахождения цикла: синие ребра - уже пройденные, красное ребро ведет в серую, уже пройденную, вершину.]] | + | [[Файл: Dfs_cycle.png|thumb|200px|right| Момент нахождения цикла: синие ребра {{---}} уже пройденные, красное ребро ведет в серую, уже пройденную, вершину.]] |
== Доказательство == | == Доказательство == | ||
Строка 14: | Строка 14: | ||
Пусть дан граф <tex>G</tex>. Запустим <tex>dfs(G)</tex>. Рассмотрим выполнение процедуры поиска в глубину от некоторой вершины <tex> v </tex>. Так как все серые вершины лежат в стеке рекурсии, то для них вершина <tex> v </tex> достижима, так как между соседними вершинами в стеке есть ребро. Тогда если из рассматриваемой вершины <tex> v </tex> существует ребро в серую вершину <tex> u </tex>, то это значит, что из вершины <tex> u </tex> существует путь в <tex> v </tex> и из вершины <tex> v </tex> существует путь в <tex> u </tex> состоящий из одного ребра. И так как оба эти пути не пересекаются, то цикл существует. | Пусть дан граф <tex>G</tex>. Запустим <tex>dfs(G)</tex>. Рассмотрим выполнение процедуры поиска в глубину от некоторой вершины <tex> v </tex>. Так как все серые вершины лежат в стеке рекурсии, то для них вершина <tex> v </tex> достижима, так как между соседними вершинами в стеке есть ребро. Тогда если из рассматриваемой вершины <tex> v </tex> существует ребро в серую вершину <tex> u </tex>, то это значит, что из вершины <tex> u </tex> существует путь в <tex> v </tex> и из вершины <tex> v </tex> существует путь в <tex> u </tex> состоящий из одного ребра. И так как оба эти пути не пересекаются, то цикл существует. | ||
− | Докажем, что если в графе <tex>G</tex> существует цикл, то <tex>dfs(G)</tex> его всегда найдет. Пусть <tex> v </tex> - первая вершина принадлежащая циклу, рассмотренная поиском в глубину. Тогда существует вершина <tex> u </tex>, принадлежащая циклу и имеющая ребро в вершину <tex> v </tex>. Так как из вершины <tex> v </tex> в вершину <tex> u </tex> существует белый путь (они лежат на одном цикле), то по [[Лемма о белых путях|лемме о белых путях]] во время выполнения процедуры поиска в глубину от вершины <tex> u </tex>, вершина <tex> v </tex> будет серой. Так как из <tex> u </tex> есть ребро в <tex> v </tex>, то это ребро в серую вершину. Следовательно <tex>dfs(G)</tex> нашел цикл. | + | Докажем, что если в графе <tex>G</tex> существует цикл, то <tex>dfs(G)</tex> его всегда найдет. Пусть <tex> v </tex> {{---}} первая вершина принадлежащая циклу, рассмотренная поиском в глубину. Тогда существует вершина <tex> u </tex>, принадлежащая циклу и имеющая ребро в вершину <tex> v </tex>. Так как из вершины <tex> v </tex> в вершину <tex> u </tex> существует белый путь (они лежат на одном цикле), то по [[Лемма о белых путях|лемме о белых путях]] во время выполнения процедуры поиска в глубину от вершины <tex> u </tex>, вершина <tex> v </tex> будет серой. Так как из <tex> u </tex> есть ребро в <tex> v </tex>, то это ребро в серую вершину. Следовательно <tex>dfs(G)</tex> нашел цикл. |
== Реализация == | == Реализация == | ||
− | + | '''int''' graph[][]; | |
+ | '''int''' color[] <tex> \leftarrow </tex> white; | ||
− | + | '''func''' dfs(u: '''int'''): | |
− | + | color[u] = grey; <font color=darkgreen> // красит вершину u в серый цвет </font> | |
− | + | '''for''' (v : uv {{---}} edge) | |
− | + | if (color[v] == white) | |
− | dfs(int | ||
− | color[ | ||
− | for (v : uv - | ||
− | if ( color[v] == white ) | ||
dfs(v); | dfs(v); | ||
− | if ( color[v] == grey ) | + | if (color[v] == grey) |
− | print(); // вывод ответа | + | print(); <font color=darkgreen> // вывод ответа </font> |
− | color[ | + | color[u] = black; <font color=darkgreen> // красит вершину u в черный цвет </font> |
− | == | + | == Источники информации == |
+ | * [http://e-maxx.ru/algo/finding_cycle MAXimal :: algo {{---}} «Проверка графа на ацикличность и нахождение цикла»] | ||
+ | * [http://shujkova.ru/sites/default/files/algorithm2.pdf Прикладные задачи алгоритма DFS] | ||
* ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | * ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | ||
Версия 11:40, 23 декабря 2014
Пусть дан ориентированный граф без петель и кратных рёбер. Требуется проверить наличие цикла в этом графе.
Решим эту задачу с помощью поиска в глубину за .
Алгоритм
Произведём серию поисков в глубину в графе. Т.е. из каждой вершины, в которую мы ещё ни разу не приходили, запустим поиск в глубину, который при входе в вершину будет красить её в серый цвет, а при выходе — в чёрный. И если поиск в глубину пытается пойти в серую вершину, то это означает, что мы нашли цикл.
Сам цикл можно восстановить проходом по массиву предков.
Доказательство
Пусть дан граф
. Запустим . Рассмотрим выполнение процедуры поиска в глубину от некоторой вершины . Так как все серые вершины лежат в стеке рекурсии, то для них вершина достижима, так как между соседними вершинами в стеке есть ребро. Тогда если из рассматриваемой вершины существует ребро в серую вершину , то это значит, что из вершины существует путь в и из вершины существует путь в состоящий из одного ребра. И так как оба эти пути не пересекаются, то цикл существует.Докажем, что если в графе лемме о белых путях во время выполнения процедуры поиска в глубину от вершины , вершина будет серой. Так как из есть ребро в , то это ребро в серую вершину. Следовательно нашел цикл.
существует цикл, то его всегда найдет. Пусть — первая вершина принадлежащая циклу, рассмотренная поиском в глубину. Тогда существует вершина , принадлежащая циклу и имеющая ребро в вершину . Так как из вершины в вершину существует белый путь (они лежат на одном цикле), то поРеализация
int graph[][];
int color[]
white;
func dfs(u: int): color[u] = grey; // красит вершину u в серый цвет for (v : uv — edge) if (color[v] == white) dfs(v); if (color[v] == grey) print(); // вывод ответа color[u] = black; // красит вершину u в черный цвет
Источники информации
- MAXimal :: algo — «Проверка графа на ацикличность и нахождение цикла»
- Прикладные задачи алгоритма DFS
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.