Алгоритм LZW — различия между версиями
Linn (обсуждение | вклад) (→Декодирование) |
Linn (обсуждение | вклад) (→Декодирование) |
||
Строка 227: | Строка 227: | ||
{| class="wikitable" border = 1, style="text-align: center; margin-left: auto; margin-right: auto;" | {| class="wikitable" border = 1, style="text-align: center; margin-left: auto; margin-right: auto;" | ||
|- | |- | ||
− | ! colspan="2" | | + | ! colspan="2" | Данные |
− | ! scope="col" width="6em" rowspan="2" | | + | ! scope="col" width="6em" rowspan="2" | На выходе |
− | ! colspan="4" | | + | ! colspan="4" | Новая запись |
− | ! rowspan="2" | | + | ! rowspan="2" | Комментарии |
|- | |- | ||
! Bits !! Code | ! Bits !! Code | ||
− | ! scope="col" width="6em" colspan="2" | | + | ! scope="col" width="6em" colspan="2" | Полная |
− | ! scope="col" width="6em" colspan="2" | | + | ! scope="col" width="6em" colspan="2" | Частичная |
|- | |- | ||
| 10100 || 20 | | 10100 || 20 |
Версия 19:41, 21 октября 2010
Алгори́тм Ле́мпеля — Зи́ва — Ве́лча (Lempel-Ziv-Welch, LZW) — это универсальный алгоритм сжатия данных без потерь, созданный Абрахамом Лемпелем(Abraham Lempel), Якобом Зивом (Jacob Ziv) и Терри Велчем (Terry Welch). Он был опубликован Велчем в 1984 году, в качестве улучшенной реализации алгоритма LZ78, опубликованного Лемпелем и Зивом в 1978 году. Алгоритм разработан так, чтобы его можно было быстро реализовать, но он не обязательно оптимален, поскольку он не проводит никакого анализа входных данных.
Применение
На момент своего появления алгоритм LZW давал лучший коэффициент сжатия, для большинства приложений, чем любой другой хорошо известный метод того времени. Он стал первым широко используемым на компьютерах методом сжатия данных.
Алгоритм был реализован в программе compress, которая стала более или менее стандартной утилитой Unix-систем приблизительно в 1986 году. Несколько других популярных утилит-архиваторов также используют этот метод или близкие к нему.
В 1987 году алгоритм стал частью стандарта на формат изображений GIF. Он также может (опционально) использоваться в формате TIFF.
В настоящее время, алгоритм содержится в стандарте PDF.
Описание
Данный алгоритм при сжатии (кодировании) динамически создаёт таблицу преобразования строк: определённым последовательностям символов (словам) ставятся в соответствие группы бит фиксированной длины (обычно 12-битные). Таблица инициализируется всеми 1-символьными строками (в случае 8-битных символов — это 256 записей). По мере кодирования, алгоритм просматривает текст символ за символом, и сохраняет каждую новую, уникальную 2-символьную строку в таблицу в виде пары код/символ, где код ссылается на соответствующий первый символ. После того как новая 2-символьная строка сохранена в таблице, на выход передаётся код первого символа. Когда на входе читается очередной символ, для него по таблице находится уже встречавшаяся строка максимальной длины, после чего в таблице сохраняется код этой строки со следующим символом на входе; на выход выдаётся код этой строки, а следующий символ используется в качестве начала следующей строки.
Алгоритму декодирования на входе требуется только закодированный текст, поскольку он может воссоздать соответствующую таблицу преобразования непосредственно по закодированному тексту.
Алгоритм
- Инициализация словаря всеми возможными односимвольными фразами. Инициализация входной фразы ω первым символом сообщения.
- Считать очередной символ K из кодируемого сообщения.
- Если КОНЕЦ_СООБЩЕНИЯ, то выдать код для ω, иначе
- Если фраза ωK уже есть в словаре, присвоить входной фразе значение ωK и перейти к Шагу 2, иначе выдать код ω, добавить ωK в словарь, присвоить входной фразе значение K и перейти к Шагу 2.
Конец
Пример
Данный пример показывает алгоритм LZW в действии, показывая состояние выходных данных и словаря на каждой стадии, как при кодировании, так и при раскодировании сообщения. С тем чтобы сделать изложение проще, мы ограничимся простым алфавитом — только заглавные буквы, без знаков препинания и пробелов. Сообщение, которое нужно сжать, выглядит следующим образом:
TOBEORNOTTOBEORTOBEORNOT#
Маркер # используется для обозначения конца сообщения. Тем самым, в нашем алфавите 27 символов (26 заглавных букв от A до Z и #). Компьютер представляет это в виде групп бит, для представления каждого символа алфавита нам достаточно группы из 5 бит на символ. По мере роста словаря, размер групп должен расти, с тем чтобы учесть новые элементы. 5-битные группы дают 25 = 32 возможных комбинации бит, поэтому, когда в словаре появится 33-е слово, алгоритм должен перейти к 6-битным группам. Заметим, что, поскольку используется группа из всех нолей 00000, то 33-я группа имеет код 32. Начальный словарь будет содержать:
Символ | Битовый код | Номер |
---|---|---|
# | 00000 | 0 |
A | 00001 | 1 |
B | 00010 | 2 |
C | 00011 | 3 |
D | 00100 | 4 |
E | 00101 | 5 |
F | 00110 | 6 |
G | 00111 | 7 |
H | 01000 | 8 |
I | 01001 | 9 |
J | 01010 | 10 |
K | 01011 | 11 |
L | 01100 | 12 |
M | 01101 | 13 |
N | 01110 | 14 |
O | 01111 | 15 |
P | 10000 | 16 |
Q | 10001 | 17 |
R | 10010 | 18 |
S | 10011 | 19 |
T | 10100 | 20 |
U | 10101 | 21 |
V | 10110 | 22 |
W | 10111 | 23 |
X | 11000 | 24 |
Y | 11001 | 25 |
Z | 11010 | 26 |
Кодирование
Без использования алгоритма LZW, при передаче сообщения как оно есть — 25 символов по 5 бит на каждый — оно займёт 125 бит. Сравним это с тем, что получается при использовании LZW:
Текущий символ | Следующий символ | Вывод | Расширенный словарь | Комментарии | ||
---|---|---|---|---|---|---|
Код | Биты | |||||
NULL | T | |||||
T | O | 20 | 10100 | 27: | TO | |
O | B | 15 | 01111 | 28: | OB | |
B | E | 2 | 00010 | 29: | BE | |
E | O | 5 | 00101 | 30: | EO | |
O | R | 15 | 01111 | 31: | OR | |
R | N | 18 | 10010 | 32: | RN | |
N | O | 14 | 001110 | 33: | NO | начинаем использовать 6 битов |
O | T | 15 | 001111 | 34: | OT | |
T | T | 20 | 010100 | 35: | TT | |
TO | B | 27 | 011011 | 36: | TOB | |
BE | O | 29 | 011101 | 37: | BEO | |
OR | T | 31 | 011111 | 38: | ORT | |
TOB | E | 36 | 100100 | 39: | TOBE | |
EO | R | 30 | 011110 | 40: | EOR | |
RN | O | 32 | 100000 | 41: | RNO | |
OT | # | 34 | 100010 | # останавливаем алгоритм; выводим текущую последовательность | ||
0 | 000000 | и останавливаем кодирование |
Длина закодированного текста = 6 × 5 + 11 × 6 = 96 битов.
Таким образом, используя LZW мы сократили сообщение на 29 бит из 125 — это почти 22 %. Если сообщение будет длиннее, то элементы словаря будут представлять всё более и более длинные части текста, благодаря чему повторяющиеся слова будут представлены очень компактно.
Декодирование
Теперь представим что мы получили закодированное сообщение, приведённое выше, и нам нужно его декодировать. Прежде всего, нам нужно знать начальный словарь, а последующие записи словаря мы можем реконструировать уже на ходу, поскольку они являются просто конкатенацией предыдущих записей.
Данные | На выходе | Новая запись | Комментарии | ||||
---|---|---|---|---|---|---|---|
Bits | Code | Полная | Частичная | ||||
10100 | 20 | T | 27: | T? | |||
01111 | 15 | O | 27: | TO | 28: | O? | |
00010 | 2 | B | 28: | OB | 29: | B? | |
00101 | 5 | E | 29: | BE | 30: | E? | |
01111 | 15 | O | 30: | EO | 31: | O? | |
10010 | 18 | R | 31: | OR | 32: | R? | created code 31 (last to fit in 5 bits) |
001110 | 14 | N | 32: | RN | 33: | N? | so start using 6 bits |
001111 | 15 | O | 33: | NO | 34: | O? | |
010100 | 20 | T | 34: | OT | 35: | T? | |
011011 | 27 | TO | 35: | TT | 36: | TO? | |
011101 | 29 | BE | 36: | TOB | 37: | BE? | 36 = TO + 1st symbol (B) of |
011111 | 31 | OR | 37: | BEO | 38: | OR? | next coded sequence received (BE) |
100100 | 36 | TOB | 38: | ORT | 39: | TOB? | |
011110 | 30 | EO | 39: | TOBE | 40: | EO? | |
100000 | 32 | RN | 40: | EOR | 41: | RN? | |
100010 | 34 | OT | 41: | RNO | 42: | OT? | |
000000 | 0 | # |