Лексикографический порядок — различия между версиями
Flanir (обсуждение | вклад) |
Flanir (обсуждение | вклад) |
||
Строка 7: | Строка 7: | ||
Приведем псевдокод сравнения последовательностей из элементов множества '''Т''': | Приведем псевдокод сравнения последовательностей из элементов множества '''Т''': | ||
− | '''function''' | + | '''function''' compare(A, B : '''list <T>''') <font color=green>// Возвращает "LT", если A < B, "GT", если A > B, или "EQ", если последовательности равны</font> |
'''for''' i = 1 '''to''' min(len(A), len(B)) | '''for''' i = 1 '''to''' min(len(A), len(B)) | ||
'''if''' A[i] < B[i] <font color=green> // i-й элемент А меньше i-го элемента B, но префиксы длины i - 1 равны</font> | '''if''' A[i] < B[i] <font color=green> // i-й элемент А меньше i-го элемента B, но префиксы длины i - 1 равны</font> | ||
− | '''return''' | + | '''return''' LT |
'''if''' A[i] > B[i] <font color=green> // i-й элемент А больше i-го элемента B, но префиксы длины i - 1 равны</font> | '''if''' A[i] > B[i] <font color=green> // i-й элемент А больше i-го элемента B, но префиксы длины i - 1 равны</font> | ||
− | '''return''' | + | '''return''' GT |
'''if''' len(A) < len(B) <font color=green>// А - префикс В, но не равна ей.</font> | '''if''' len(A) < len(B) <font color=green>// А - префикс В, но не равна ей.</font> | ||
− | '''return''' | + | '''return''' LT |
'''if''' len(A) > len(B) <font color=green>// В - префикс А, но не равна ей.</font> | '''if''' len(A) > len(B) <font color=green>// В - префикс А, но не равна ей.</font> | ||
− | '''return''' | + | '''return''' GT |
− | '''return''' | + | '''return''' EQ <font color=green>// Длины последовательностей и все элементы равны</font> |
{{Определение | {{Определение | ||
|definition=Последовательности записаны в '''лексикографическом порядке''' (англ. ''lexicographical order''), если для любых <tex> i<j </tex> выполняется неравенство <tex> S_i<S_j </tex>, где <tex> S_i </tex> и <tex> S_j </tex> последовательности с номерами <tex> i </tex> и <tex> j </tex>. | |definition=Последовательности записаны в '''лексикографическом порядке''' (англ. ''lexicographical order''), если для любых <tex> i<j </tex> выполняется неравенство <tex> S_i<S_j </tex>, где <tex> S_i </tex> и <tex> S_j </tex> последовательности с номерами <tex> i </tex> и <tex> j </tex>. |
Версия 01:10, 31 декабря 2014
Определение: |
Пусть даны две последовательности Тогда последовательность лексикографически меньше последовательности , если выполняется одно из двух условий:
| и
Приведем псевдокод сравнения последовательностей из элементов множества Т:
function compare(A, B : list <T>) // Возвращает "LT", если A < B, "GT", если A > B, или "EQ", если последовательности равны for i = 1 to min(len(A), len(B)) if A[i] < B[i] // i-й элемент А меньше i-го элемента B, но префиксы длины i - 1 равны return LT if A[i] > B[i] // i-й элемент А больше i-го элемента B, но префиксы длины i - 1 равны return GT if len(A) < len(B) // А - префикс В, но не равна ей. return LT if len(A) > len(B) // В - префикс А, но не равна ей. return GT return EQ // Длины последовательностей и все элементы равны
Определение: |
Последовательности записаны в лексикографическом порядке (англ. lexicographical order), если для любых | выполняется неравенство , где и последовательности с номерами и .
Например, слово "сон" лексикографически меньше слова "сонный", так как оно является его префиксом. Слово "низ" лексикографически меньше слова "нос", поскольку первые символы совпадают, а второй символ первого слова меньше, чем второй символ второго.
Примеры с комбинаторными объектами
Другие примеры
- Последовательность чисел в любой системе счисления, записанных в фиксированной разрядной сетке (000, 001, 002, 003, 004, 005, , 999).
- Порядок слов в словаре. Предполагается, что буквы можно сравнивать, сравнивая их номера в алфавите. Тогда лексикографический порядок — это, например, ААА, ААБ, ААВ, ААГ, , ЯЯЯ.
- Эти слова тоже записаны в лексикографическом порядке: азбука, бог, борода, сон, сонный.