Сложение и разность потоков — различия между версиями
Martoon (обсуждение | вклад) |
м |
||
Строка 2: | Строка 2: | ||
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | Пусть <tex> G = (V, E) </tex> | + | Пусть <tex> G = (V, E) - </tex> [[Определение_сети,_потока#flow_network|транспортная сеть]] с источником <tex>s</tex> и стоком <tex>t</tex>, а <tex>f - </tex> [[Определение_сети,_потока#flow|поток]] в <tex>G</tex>. Пусть <tex>G_f - </tex> [[Дополняющая_сеть,_дополняющий_путь#residual_network|остаточная сеть]] в <tex>G</tex>, порожденная потоком <tex>f</tex>, а <tex>f' - </tex> поток в <tex>G_f</tex>. Тогда сумма потоков <tex>f + f'</tex>, определяемая уравнением <tex>(f + f')(u, v) = f(u,v) + f'(u,v)</tex>, является потоком в <tex>G</tex>, и [[Определение_сети,_потока#flow|величина]] этого потока равна <tex>|f + f'| = |f| + |f'|</tex>. |
|proof= | |proof= | ||
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения [[Определение_сети,_потока#flow|потока]]. | Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения [[Определение_сети,_потока#flow|потока]]. | ||
Строка 11: | Строка 11: | ||
− | 2) Покажем соблюдение ограничений пропускной способности. Заметим, что <tex>f'(u,v) \ | + | 2) Покажем соблюдение ограничений пропускной способности. Заметим, что <tex>f'(u,v) \leqslant c_f(u,v)</tex> для всех <tex>u,v \in V </tex> и <tex> c_f(u, v) = c(u, v) - f(u, v) </tex>. Тогда <br> |
− | <tex>(f + f')(u,v) = f(u,v) + f'(u,v) \ | + | <tex>(f + f')(u,v) = f(u,v) + f'(u,v) \leqslant f(u,v) + (c(u,v) - f(u,v)) = c(u,v) </tex>. |
Строка 20: | Строка 20: | ||
}} | }} | ||
− | == | + | == Лемма о разности потоков== |
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | Также есть | + | Также есть лемма о разности потоков. Пусть <tex> G = (V, E) - </tex> транспортная сеть с источником <tex>s</tex> и стоком <tex>t</tex>, а <tex>h</tex> и <tex>f - </tex> [[Определение_сети,_потока#flow|потоки]] в <tex>G</tex>. Пусть <tex>G_f - </tex>[[Дополняющая_сеть,_дополняющий_путь#residual_network|остаточная сеть]] в <tex>G</tex>, порожденная потоком <tex>f</tex>. Тогда разность потоков <tex>h - f</tex>, определяемая уравнением <tex>(h - f)(u, v) = h(u,v) - f(u,v)</tex>, является потоком в <tex>G_f</tex>, и величина этого потока равна <tex>|h - f| = |h| - |f|</tex>. |
|proof= | |proof= | ||
Антисимметричность и правило сохранения потока для <tex>h - f</tex> проверяются аналогично лемме о сложении потоков. | Антисимметричность и правило сохранения потока для <tex>h - f</tex> проверяются аналогично лемме о сложении потоков. | ||
Строка 29: | Строка 29: | ||
Покажем соблюдение ограничений пропускной способности. | Покажем соблюдение ограничений пропускной способности. | ||
− | <tex>(h - f)(u,v) = h(u,v) - f(u,v) \ | + | <tex>(h - f)(u,v) = h(u,v) - f(u,v) \leqslant c(u,v) - f(u,v) = c_f(u,v) </tex>. |
Теперь покажем, что [[Определение_сети,_потока#flow|величина]] потока <tex>h - f</tex> равна разности величин потоков <tex>h</tex> и <tex>f</tex>. | Теперь покажем, что [[Определение_сети,_потока#flow|величина]] потока <tex>h - f</tex> равна разности величин потоков <tex>h</tex> и <tex>f</tex>. | ||
Строка 36: | Строка 36: | ||
}} | }} | ||
− | == | + | == Источники информации == |
* ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | * ''Кормен Т., Лейзерсон Ч., Ривест Р.'' Алгоритмы: построение и анализ.[http://wmate.ru/ebooks/?dl=380&mirror=1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296. | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Задача о максимальном потоке]] | [[Категория:Задача о максимальном потоке]] |
Версия 19:36, 1 января 2015
Лемма о сложении потоков
Лемма: |
Пусть транспортная сеть с источником и стоком , а поток в . Пусть остаточная сеть в , порожденная потоком , а поток в . Тогда сумма потоков , определяемая уравнением , является потоком в , и величина этого потока равна . |
Доказательство: |
Необходимо проверить, выполняются ли ограничения антисимметричности, пропускной способности и сохранения потока. 1) Для подтверждения антисимметричности заметим, что для всех справедливо:
|
Лемма о разности потоков
Лемма: |
Также есть лемма о разности потоков. Пусть потоки в . Пусть остаточная сеть в , порожденная потоком . Тогда разность потоков , определяемая уравнением , является потоком в , и величина этого потока равна . транспортная сеть с источником и стоком , а и |
Доказательство: |
Антисимметричность и правило сохранения потока для проверяются аналогично лемме о сложении потоков.Покажем соблюдение ограничений пропускной способности. . Теперь покажем, что величина потока равна разности величин потоков и . |
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.