Нормальная форма Куроды — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 114: Строка 114:
 
Из построения очевидно, что <tex>G'</tex> имеет порядок <tex>n - 1</tex>.
 
Из построения очевидно, что <tex>G'</tex> имеет порядок <tex>n - 1</tex>.
  
Покажем, что L(G') = L(G).
+
Покажем, что <tex>L(G') = L(G)</tex>.
  
Сначала докажем, что L(G) <= L(G'). Это следует из того, что:
+
Сначала докажем, что <tex>L(G) <= L(G')</tex>. Это следует из того, что:
* все правила из P_1 применимы к обеим грамматикам,  
+
* все правила из <tex>P_1</tex> применимы к обеим грамматикам,  
* шаг вывода \gamma_1AB\alpha'\gamma_2 => \gamma_1CDE\beta'\gamma_2, благодаря правилу p = AB\alpha \rightarrow CDE\beta' \in P_2 в G, может быть использавано в G' с помощью трех шагов:
+
* шаг вывода <tex>\gamma_1AB\alpha'\gamma_2 => \gamma_1CDE\beta'\gamma_2</tex>, благодаря правилу <tex>p = AB\alpha \rightarrow CDE\beta' \in P_2</tex> в <tex>G</tex>может быть использавано в <tex>G'</tex> с помощью трех шагов:
\gamma_1AB\alpha'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 => \gamma_1CB_p\alpha'\gamma_2 => \gamma_1CDE\beta\gamma_2, с использованием правил из P_p и вывода \gamma_1A\gamma_2 => \gamma_1CDE\beta'\gamma_2 на основе правила p = A\alpha \rightarrow CDE\beta' \in P_3 в G, которое может быть применено в G' с помощью трех шагов вывода:
+
<tex>\gamma_1AB\alpha'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 => \gamma_1CB_p\alpha'\gamma_2 => \gamma_1CDE\beta\gamma_2</tex>, с использованием правил из <tex>P_p</tex> и вывода <tex>\gamma_1A\gamma_2 => \gamma_1CDE\beta'\gamma_2</tex> на основе правила <tex>p = A\alpha \rightarrow CDE\beta' \in P_3</tex> в <tex>G</tex>, которое может быть применено в <tex>G'</tex> с помощью трех шагов вывода:
\gamma_1A\alpha1'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 => \gamma_1CB_p\alpha'\gamma_2 => \gamma_1CDE\beta\gamma_2.
+
<tex>\gamma_1A\alpha1'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 => \gamma_1CB_p\alpha'\gamma_2 => \gamma_1CDE\beta\gamma_2</tex>.
Таким образом, любой вывод в G может быть преобразован в вывод в G'.
+
Таким образом, любой вывод в <tex>G</tex> может быть преобразован в вывод в <tex>G'</tex>.
  
Чтобы показать обратное включение, рассмотрим вывод w \in L(G') в G', который содержит применение правил вида AB \rightarrow A_pB_p для какого-то правила p = AB\alpha' \rightarrow CDE\beta' \in P_2  
+
Чтобы показать обратное включение, рассмотрим вывод <tex>w \in L(G')</tex> в <tex>G'</tex>, который содержит применение правил вида <tex>AB \rightarrow A_pB_p</tex> для какого-то правила <tex>p = AB\alpha' \rightarrow CDE\beta' \in P_2</tex>. Заметим, что другие два правила из <tex>P_p</tex> могут быть применены только если правило <tex>AB \rightarrow A_pB_p</tex> было применено в этом выводе ранее.
(Заметим, что другие два правила из P_p могут быть применены только если правило AB \rightarrow A_pB_p было применено в этом выводе ранее).
 
Данный вывод имеет вид:
 
(1) S =>* \gamma_1AB\alpha'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 =>(q_1) \gamma_1'A_pB_p\alpha'\gamma_2' => \gamma_1'CB_p\alpha'\gamma_2' =>(q_2) \gamma_1''B_p\alpha'\gamma_2'' => \gamma_1''DE\beta'\gamma_2'' =>* w \in T^*,
 
где q_1 {{---}} последовательность правил, примененых после AB \rightarrow A_pB_p и до A_p \rightarrow C, которая осуществляет \gamma_1 =>* \gamma_1' и \gamma_2 =>* \gamma_2',
 
где q_2 {{---}} последовательность правил, осуществляющих \gamma_1'C =>* \gamma_1'' и \gamma_2' =>* \gamma_2''.
 
  
Или (2) S =>* \gamma_1AB\alpha'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 =>(q_1') \gamma_1'A_pB_p\alpha'\gamma_2' => \gamma_1'A_pDE\beta'\alpha'\gamma_2' =>(q_2') \gamma_1''A_p\gamma_2'' => \gamma_1''C\gamma_2'' =>* w \in T^*,
+
Данный вывод имеет вид (1) : <tex>S =>* \gamma_1AB\alpha'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 =>(q_1) \gamma_1'A_pB_p\alpha'\gamma_2' => \gamma_1'CB_p\alpha'\gamma_2' =>(q_2) \gamma_1''B_p\alpha'\gamma_2'' => \gamma_1''DE\beta'\gamma_2'' =>* w \in T^*</tex>,
где q_1' {{---}} последовательность правил, которая осуществляет \gamma_1 =>* \gamma_1' и \gamma_2 =>* \gamma_2',
+
 
где q_2' {{---}} последовательность правил, осуществляющих \gamma_1' =>* \gamma_1'' и DE\beta'\gamma_2' =>* \gamma_2''.
+
где <tex>q_1</tex> {{---}} последовательность правил, примененых после <tex>AB \rightarrow A_pB_p</tex> и до <tex>A_p \rightarrow C</tex>, которая осуществляет <tex>\gamma_1 =>* \gamma_1'</tex> и <tex>\gamma_2 =>* \gamma_2'</tex>,
 +
 
 +
где <tex>q_2</tex> {{---}} последовательность правил, осуществляющих <tex>\gamma_1'C =>* \gamma_1''</tex> и <tex>\gamma_2' =>* \gamma_2''</tex>.
 +
 
 +
Или вид (2) : <tex>S =>* \gamma_1AB\alpha'\gamma_2 => \gamma_1A_pB_p\alpha'\gamma_2 =>(q_1') \gamma_1'A_pB_p\alpha'\gamma_2' => \gamma_1'A_pDE\beta'\alpha'\gamma_2' =>(q_2') \gamma_1''A_p\gamma_2'' => \gamma_1''C\gamma_2'' =>* w \in T^*</tex>,
 +
 
 +
где <tex>q_1'</tex> {{---}} последовательность правил, которая осуществляет <tex>\gamma_1 =>* \gamma_1'</tex> и <tex>\gamma_2 =>* \gamma_2'</tex>,
 +
 
 +
где <tex>q_2'</tex> {{---}} последовательность правил, осуществляющих <tex>\gamma_1' =>* \gamma_1''</tex> и <tex>DE\beta'\gamma_2' =>* \gamma_2''</tex>.
  
 
Таким образом, существует вывод:
 
Таким образом, существует вывод:
S =>* \gamma_1AB\alpha'\gamma_2 => \gamma_1CDE\beta'\gamma_2 => (q_1) \gamma_1'CDE\beta'\gamma_2' => (q_2) \gamma_1''DE\beta'\gamma_2'' =>* w \in T^*,
+
<tex>S =>* \gamma_1AB\alpha'\gamma_2 => \gamma_1CDE\beta'\gamma_2 => (q_1) \gamma_1'CDE\beta'\gamma_2' => (q_2) \gamma_1''DE\beta'\gamma_2'' =>* w \in T^*</tex>, который получается из (1) заменой правил <tex>P_p</tex> на применение <tex>p = AB\alpha' \rightarrow CDE\beta \in P</tex>. Аналогично, в случае (2) мы можем заменить применение <tex>P_p</tex> на <tex>p</tex>. Кроме того, это верно и для применения <tex>P_q,</tex> где <tex>q \in P_3</tex>.
который получается из (1) заменой правил P_p на применение p = AB\alpha' \rightarrow CDE\beta \in P. Аналогично, в случае (2) мы можем заменить применение P_p на p. Кроме того, это верно и для применения P_q, где q \in P_3.  
+
Таким образом, для r \in P_2 U P_3 мы можем заменить все применения P_r на r, то есть получаем вывод w, который состоит только из правил из P. Тогда w \in L(G) и L(G') <= L(G).
+
Таким образом, для <tex>r \in P_2 \cup P_3</tex> мы можем заменить все применения <tex>P_r</tex> на <tex>r</tex>, то есть получаем вывод <tex>w</tex>, который состоит только из правил из <tex>P</tex>.  
 +
 
 +
Тогда <tex>w \in L(G)</tex> и <tex>L(G') <= L(G)</tex>.
 
}}
 
}}
  
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Любую грамматику G можно преобразовать к грамматике G_K в нормальной форме Куроды, так что L(G) = L(G_K).
+
Любую грамматику <tex>G</tex> можно преобразовать к грамматике <tex>G_K</tex> в нормальной форме Куроды так, что <tex>L(G) = L(G_K)</tex>.
 
|proof=
 
|proof=
По лемме 1 построим из G грамматику G', затем по лемме 2 построим из G' грамматику G'', Тогда G'' удовлетворит требованиям леммы 3.
+
По лемме 1 построим из <tex>G</tex> грамматику <tex>G'</tex>, затем по лемме 2 построим из <tex>G'</tex> грамматику <tex>G''</tex>, Тогда <tex>G''</tex> удовлетворит требованиям леммы 3.
Пусть G'' имеет порядок n. Нсли n = 2, то G'' в нормальной форме Куроды и G_K = G''. Если n >= 3, построим G''' порядка n - 1 из G'' по лемме 3.
+
 
Понятно, что G''' удовлетворяет условиям леммы 3, будем повторять процесс, пока не получим грамматику порядка 2, которую и примем за G_K.
+
Пусть <tex>G''</tex> имеет порядок <tex>n</tex>.  
 +
Если <tex>n = 2</tex>, то <tex>G''</tex> в нормальной форме Куроды и <tex>G_K = G''</tex>.  
 +
Если <tex>n >= 3</tex>, построим <tex>G'''</tex> порядка <tex>n - 1</tex> из <tex>G''</tex> по лемме 3.
 +
Понятно, что <tex>G'''</tex> удовлетворяет условиям леммы 3.
 +
Будем повторять процесс, пока не получим грамматику порядка <tex>2</tex>, которую и примем за <tex>G_K</tex>.
 
}}
 
}}

Версия 14:00, 4 января 2015

Определение:
Грамматика представлена в нормальной форме Куроды (англ. Kuroda normal form), если каждое правило имеет одну из четырех форм:
  1. [math]AB \rightarrow CD[/math]
  2. [math]A \rightarrow BC[/math]
  3. [math]A \rightarrow B[/math]
  4. [math]A \rightarrow a[/math] или [math]A \rightarrow \varepsilon[/math]
Где [math]A, B, C, D[/math] — нетерминалы, [math]a[/math] — терминал.


Данная грамматика названа в честь Куроды (англ. Sige-Yuki Kuroda), который изначально назвал ее линейно ограниченной грамматикой.


Определение:
Грамматика представлена в нормальной форме Пенттонена (англ. Penttonen normal form), если каждое правило имеет одну из трех форм:
  1. [math]AB \rightarrow CD[/math]
  2. [math]A \rightarrow BC[/math]
  3. [math]A \rightarrow a[/math] или [math]A \rightarrow \varepsilon[/math]
Где [math]A, B, C, D [/math] — нетерминалы, [math]a[/math] — терминал.


Также грамматику Пенттонена называют односторонней нормальной формой (англ. one-sided normal form). Как можно заметить, она является частным случаем нормальной формы Куроды: когда [math]A = C[/math] в первом правиле определения. Для каждой контестно-зависимой грамматики существует слабо эквивалентная ей грамматика в форме Пенттонена.

Лемма (об удалении терминалов):
Для любой грамматики [math]G = (N, T, P, S)[/math] может быть построена грамматика [math]G' = (N', T, P', S)[/math] такая, что:
  • все правила в [math]P'[/math] имеет вид [math]\alpha \rightarrow \beta[/math] где [math]\alpha \in (N')^+[/math] и [math]\beta \in (N')^*[/math] или [math]A \rightarrow a[/math], где [math]A \in N', a \in T[/math],
  • [math]L(G') = L(G)[/math]
Кроме того, если G контекстно-свободна или контекстно-зависима, то и [math]G'[/math] будет соответственно контекстно-свободной или контекстно-зависимой.
Доказательство:
[math]\triangleright[/math]

Каждому терминалу [math]a[/math] поставим в соотвествие новый символ [math]a'[/math], которого нет в [math]N \cup T[/math], такой что [math]a' \neq b'[/math] для разных терминалов [math]a[/math] и [math]b[/math].

Пусть [math]N' = N \cup \{a' | a \in T\}[/math].

Пусть [math]\alpha = x_1x_2...x_n[/math] — часть правила, тогда [math]\alpha' = y_1y_2...y_n[/math], где [math]y_i = \{x_i[/math], если [math]x_i \in N[/math]; [math]x_i'[/math], если [math]x_i \in T\}[/math] для [math]1 \lt = i \lt = n[/math].

Построим грамматику [math]G' = (N', T, P', S)[/math], где [math]P' = \{\alpha' \rightarrow \beta' : \alpha \rightarrow \beta \in P\} \cup \{a' \rightarrow a: a \in T\}[/math].

Покажем, что [math]L(G') = L(G)[/math].

Пусть [math]w \in L(G)[/math]. Тогда в G существует вывод [math]S = w_0 =\gt w_1 =\gt ... =\gt w_n =\gt w[/math].

Согласно конструкции [math]P'[/math], в [math]G'[/math] существует вывод [math]S = w_0' =\gt w_1' =\gt w_2' =\gt ... =\gt w_n' = v_0 =\gt v_1 =\gt v_2 =\gt ... =\gt v_m = w[/math].

Для [math]0 \lt = i \lt = n - 1[/math] в переходах [math]w_i' =\gt w_{i + 1}'[/math] используем правило [math]\alpha' \rightarrow \beta'[/math], так как правило [math]\alpha \rightarrow \beta[/math] было использовано при выводе [math]w_i =\gt w_{i + 1}[/math].

Для [math]0 \lt = j \lt = m - 1[/math] в переходах [math]v_j =\gt v_{j + 1}[/math] используем правила вида [math]a' \rightarrow a[/math].

Заменяем разрешенные в [math]w'[/math] символы на новые и получаем, что [math]w \in L(G')[/math]. Тогда [math]L(G) \lt = L(G')[/math].

Пусть [math]x \in L(G')[/math]. Тогда в [math]G'[/math] существует вывод [math]S =\gt * x[/math]. Мы можем поменять порядок применения правил в этом выводе: сначала применяем только правила вида [math]\alpha' \rightarrow \beta'[/math], а потом только правила вида [math]a' \rightarrow a[/math].

Из построения: после применения правила вида [math]a' \rightarrow a[/math] полученное [math]a[/math] не может быть использовано при применении правил из [math]P'[/math].

Изменение порядка вывода не меняет язык, то есть в [math]G'[/math] существует вывод: [math]S = x_0' =\gt x_1' =\gt ... =\gt x_r' =\gt x' =\gt y_1 =\gt y_2 =\gt ... =\gt y_s = x[/math], где для [math]0 \lt = i \lt = r - 1 x_{i + 1}' \in (N')^*[/math] и в переходе [math]x_i' \rightarrow x_{i + 1}'[/math] было использовано правило вывода [math]\alpha' \rightarrow \beta'[/math] и для [math]1 \lt = j \lt = s[/math] было использовано правило [math]a' \rightarrow a[/math], чтобы получить [math]y_j \rightarrow y_{j + 1}[/math].

Получаем вывод в [math]G[/math]: [math]S = x_0 =\gt x_1 =\gt ... =\gt x_n = x[/math].

Тогда [math]L(G') \lt = L(G)[/math].

Таким образом, [math]L(G') = L(G)[/math].

Очевидно, что если грамматика была неукорочивающейся, то она такой и останется.
[math]\triangleleft[/math]
Лемма (об удалении длинных правил):
Для любой грамматики [math]G = (N, T, P, S)[/math] может быть построена грамматика [math]G' = (N', T, P', S)[/math] такая, что:
  • любое правило из [math]P'[/math] имеет вид: [math]\alpha \rightarrow \beta[/math], где [math]\alpha \in (N')^+[/math] и [math]\beta \in (N')^+[/math] и [math]|\alpha| \lt = |\beta|[/math], или [math]A \rightarrow a[/math], или [math]A \rightarrow \varepsilon[/math], где [math]A \in N'[/math] и [math]a \in T[/math]
  • [math]L(G') = L(G)[/math]
Доказательство:
[math]\triangleright[/math]

Сначала по [math]G[/math] построим грамматику [math]G'' = (N'', T, P'', S)[/math], как в доказательстве леммы 1. По [math]G''[/math] построим грамматику [math]G'[/math], в которой:

  • [math]N' = N'' \cup \{D\}[/math], где [math]D[/math] — новый символ,
  • [math]P'[/math] получаем из [math]P''[/math] заменой всех правил вида [math]\alpha \rightarrow \beta \in P''[/math], где [math]|\alpha| \gt |\beta|[/math] на правила вида [math]\alpha \rightarrow \beta D^{|\alpha| - |\beta|}[/math], и добавлением правила [math]D \rightarrow \varepsilon[/math].

Теперь все правила в [math]P'[/math] имеет требуемую форму.

Покажем, что [math]L(G') = L(G)[/math].

Заметим, что замена правила [math]\alpha \rightarrow \beta[/math] на [math]\alpha \rightarrow \beta D^{|\alpha| - |\beta|}[/math] не меняет язык грамматики, потому что дополнительная буква [math]D[/math] запрещается при добавлении перехода [math]D \rightarrow \varepsilon[/math], а других правил для [math]D[/math] нет.

Тогда получаем, что [math]L(G) \lt = L(G')[/math], аналогично обратные изменения не меняют язык, то есть [math]L(G') \lt = L(G)[/math].
[math]\triangleleft[/math]


Определение:
Грамматика имеет порядок n, если [math]|\alpha| \lt = n[/math] и [math]|\beta| \lt = n[/math] для любого ее правила [math]\alpha \rightarrow \beta[/math].


Лемма (об уменьшении порядка грамматики):
(Уменьшение порядка грамматики) Для любой грамматики [math]G = (N, T, P, S)[/math] порядка [math]n \gt = 3[/math], такой что: любое правило из [math]P'[/math] имеет вид [math]\alpha \rightarrow \beta[/math], где [math]\alpha \in (N')^+[/math] и [math]\beta \in (N')^+[/math] и [math]|\alpha| \lt = |\beta|[/math] или [math]A \rightarrow a[/math] или [math]A \rightarrow \varepsilon[/math], где [math]A \in N'[/math] и [math]a \in T[/math] может быть построена грамматика [math]G' = (N', T, P', S)[/math] порядка [math]n - 1[/math] такая, что [math]L(G') = L(G)[/math].
Доказательство:
[math]\triangleright[/math]

Разделим [math]P[/math] на три подмножества: [math]P_1 = \{ \alpha \rightarrow \beta | \alpha \rightarrow \beta \in P, |\alpha| \lt = 2, |\beta| \lt = 2 \}[/math],

[math]P_2 = \{ \alpha \rightarrow \beta | \alpha \rightarrow \beta \in P, |\alpha| \gt = 2, |\beta| \gt = 3 \}[/math],

[math]P_3 = \{ \alpha \rightarrow \beta | \alpha \rightarrow \beta \in P, |\alpha| = 1, |\beta| \gt = 3 \}[/math].

Очевидно, что [math]P = P_1 \cup P_2 \cup P_3[/math].

Построим [math]G'[/math] следующим образом:

  • Если правило [math]p \in P_2[/math], то оно имеет вид [math]AB\alpha' \rightarrow CDE\beta'[/math], где [math]\alpha' \in N^*[/math] и [math]\beta' \in N^*[/math].

Полагаем [math]N_p = \{ A_p, B_p \}[/math], [math]P_p = \{ AB \rightarrow A_pB_p, A_p \rightarrow C, B_p\alpha' \rightarrow DE\beta'\}[/math], где [math]A_p, B_p[/math] — дополнительные символы не из [math]N: \{A_p, B_p\} \cap \{A_q, B_q\} = 0[/math] для разных правил [math]p[/math] и [math]q[/math] из [math]P_2[/math].

  • Если правило [math]p \in P_3[/math], то оно имеет вид [math]A \rightarrow CDE\beta'[/math], где [math]\beta' \in N^*[/math].

Полагаем [math]N_p = \{B_p \}[/math], [math]P_p = \{A \rightarrow CB_p, B_p \rightarrow DE\beta'\}[/math], где [math]A_p, B_p[/math] — дополнительные символы.

Тогда [math]N' = N \bigcup_{p \in (P_2 \cup P_3)} N_p[/math], [math]P' = P_1 \bigcup_{p \in (P_2 \cup P_3)} P_p[/math].

Из построения очевидно, что [math]G'[/math] имеет порядок [math]n - 1[/math].

Покажем, что [math]L(G') = L(G)[/math].

Сначала докажем, что [math]L(G) \lt = L(G')[/math]. Это следует из того, что:

  • все правила из [math]P_1[/math] применимы к обеим грамматикам,
  • шаг вывода [math]\gamma_1AB\alpha'\gamma_2 =\gt \gamma_1CDE\beta'\gamma_2[/math], благодаря правилу [math]p = AB\alpha \rightarrow CDE\beta' \in P_2[/math] в [math]G[/math]может быть использавано в [math]G'[/math] с помощью трех шагов:

[math]\gamma_1AB\alpha'\gamma_2 =\gt \gamma_1A_pB_p\alpha'\gamma_2 =\gt \gamma_1CB_p\alpha'\gamma_2 =\gt \gamma_1CDE\beta\gamma_2[/math], с использованием правил из [math]P_p[/math] и вывода [math]\gamma_1A\gamma_2 =\gt \gamma_1CDE\beta'\gamma_2[/math] на основе правила [math]p = A\alpha \rightarrow CDE\beta' \in P_3[/math] в [math]G[/math], которое может быть применено в [math]G'[/math] с помощью трех шагов вывода: [math]\gamma_1A\alpha1'\gamma_2 =\gt \gamma_1A_pB_p\alpha'\gamma_2 =\gt \gamma_1CB_p\alpha'\gamma_2 =\gt \gamma_1CDE\beta\gamma_2[/math]. Таким образом, любой вывод в [math]G[/math] может быть преобразован в вывод в [math]G'[/math].

Чтобы показать обратное включение, рассмотрим вывод [math]w \in L(G')[/math] в [math]G'[/math], который содержит применение правил вида [math]AB \rightarrow A_pB_p[/math] для какого-то правила [math]p = AB\alpha' \rightarrow CDE\beta' \in P_2[/math]. Заметим, что другие два правила из [math]P_p[/math] могут быть применены только если правило [math]AB \rightarrow A_pB_p[/math] было применено в этом выводе ранее.

Данный вывод имеет вид (1) : [math]S =\gt * \gamma_1AB\alpha'\gamma_2 =\gt \gamma_1A_pB_p\alpha'\gamma_2 =\gt (q_1) \gamma_1'A_pB_p\alpha'\gamma_2' =\gt \gamma_1'CB_p\alpha'\gamma_2' =\gt (q_2) \gamma_1''B_p\alpha'\gamma_2'' =\gt \gamma_1''DE\beta'\gamma_2'' =\gt * w \in T^*[/math],

где [math]q_1[/math] — последовательность правил, примененых после [math]AB \rightarrow A_pB_p[/math] и до [math]A_p \rightarrow C[/math], которая осуществляет [math]\gamma_1 =\gt * \gamma_1'[/math] и [math]\gamma_2 =\gt * \gamma_2'[/math],

где [math]q_2[/math] — последовательность правил, осуществляющих [math]\gamma_1'C =\gt * \gamma_1''[/math] и [math]\gamma_2' =\gt * \gamma_2''[/math].

Или вид (2) : [math]S =\gt * \gamma_1AB\alpha'\gamma_2 =\gt \gamma_1A_pB_p\alpha'\gamma_2 =\gt (q_1') \gamma_1'A_pB_p\alpha'\gamma_2' =\gt \gamma_1'A_pDE\beta'\alpha'\gamma_2' =\gt (q_2') \gamma_1''A_p\gamma_2'' =\gt \gamma_1''C\gamma_2'' =\gt * w \in T^*[/math],

где [math]q_1'[/math] — последовательность правил, которая осуществляет [math]\gamma_1 =\gt * \gamma_1'[/math] и [math]\gamma_2 =\gt * \gamma_2'[/math],

где [math]q_2'[/math] — последовательность правил, осуществляющих [math]\gamma_1' =\gt * \gamma_1''[/math] и [math]DE\beta'\gamma_2' =\gt * \gamma_2''[/math].

Таким образом, существует вывод: [math]S =\gt * \gamma_1AB\alpha'\gamma_2 =\gt \gamma_1CDE\beta'\gamma_2 =\gt (q_1) \gamma_1'CDE\beta'\gamma_2' =\gt (q_2) \gamma_1''DE\beta'\gamma_2'' =\gt * w \in T^*[/math], который получается из (1) заменой правил [math]P_p[/math] на применение [math]p = AB\alpha' \rightarrow CDE\beta \in P[/math]. Аналогично, в случае (2) мы можем заменить применение [math]P_p[/math] на [math]p[/math]. Кроме того, это верно и для применения [math]P_q,[/math] где [math]q \in P_3[/math].

Таким образом, для [math]r \in P_2 \cup P_3[/math] мы можем заменить все применения [math]P_r[/math] на [math]r[/math], то есть получаем вывод [math]w[/math], который состоит только из правил из [math]P[/math].

Тогда [math]w \in L(G)[/math] и [math]L(G') \lt = L(G)[/math].
[math]\triangleleft[/math]
Теорема:
Любую грамматику [math]G[/math] можно преобразовать к грамматике [math]G_K[/math] в нормальной форме Куроды так, что [math]L(G) = L(G_K)[/math].
Доказательство:
[math]\triangleright[/math]

По лемме 1 построим из [math]G[/math] грамматику [math]G'[/math], затем по лемме 2 построим из [math]G'[/math] грамматику [math]G''[/math], Тогда [math]G''[/math] удовлетворит требованиям леммы 3.

Пусть [math]G''[/math] имеет порядок [math]n[/math]. Если [math]n = 2[/math], то [math]G''[/math] в нормальной форме Куроды и [math]G_K = G''[/math]. Если [math]n \gt = 3[/math], построим [math]G'''[/math] порядка [math]n - 1[/math] из [math]G''[/math] по лемме 3. Понятно, что [math]G'''[/math] удовлетворяет условиям леммы 3.

Будем повторять процесс, пока не получим грамматику порядка [math]2[/math], которую и примем за [math]G_K[/math].
[math]\triangleleft[/math]