ДМП-автоматы и неоднознчность — различия между версиями
(→Теорема 0) |
(→Теоремы) |
||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
==Теоремы== | ==Теоремы== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Теорема | {{Теорема | ||
|id=t1 | |id=t1 | ||
Строка 72: | Строка 6: | ||
|statement=Если <tex>L=N(P)</tex> для некоторого ДМП автомата <tex>P</tex>, то <tex>L</tex> имеет однозначную КС-грамматику | |statement=Если <tex>L=N(P)</tex> для некоторого ДМП автомата <tex>P</tex>, то <tex>L</tex> имеет однозначную КС-грамматику | ||
|proof= | |proof= | ||
− | Утверждаем, что конструкция теоремы | + | Утверждаем, что конструкция [[Совпадение множества языков МП-автоматов и контекстно-свободных языков#th2|теоремы]] порождает однозначную КС-грамматику <tex>G</tex>, когда МП-автомат, к которому она применяется, детерминирован. Вначале вспомним (см. теорему 5.29), что для однозначности грамматики <tex>G</tex> достаточно показать, что она имеет уникальные левые порождения. |
Предположим, <tex>P</tex> допускает <tex>w</tex> по пустому магазину. Тогда он делает это с помощью одной-единственной последовательности переходов, поскольку он детерминирован и не может работать после опустошения магазина. Зная эту последовательность переходов, мы можем однозначно определить выбор каждой продукции в левом порождении <tex>w</tex> в <tex>G</tex>. Правило автомата <tex>P</tex>, на основании которого применяется продукция, всегда одно. Но правило, скажем, <tex>\delta(q, a, X) = \{(r, Y_1Y_2...Y_k)\}</tex>, может порождать много продукций грамматики <tex>G</tex>, с различными состояниями в позициях, отражающих состояния <tex>P</tex> после удаления каждого из <tex>Y_1</tex>, <tex>Y_2</tex>, ..., <tex>Y_k</tex>. Однако, поскольку <tex>P</tex> детерминирован, осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению <tex>w</tex>. | Предположим, <tex>P</tex> допускает <tex>w</tex> по пустому магазину. Тогда он делает это с помощью одной-единственной последовательности переходов, поскольку он детерминирован и не может работать после опустошения магазина. Зная эту последовательность переходов, мы можем однозначно определить выбор каждой продукции в левом порождении <tex>w</tex> в <tex>G</tex>. Правило автомата <tex>P</tex>, на основании которого применяется продукция, всегда одно. Но правило, скажем, <tex>\delta(q, a, X) = \{(r, Y_1Y_2...Y_k)\}</tex>, может порождать много продукций грамматики <tex>G</tex>, с различными состояниями в позициях, отражающих состояния <tex>P</tex> после удаления каждого из <tex>Y_1</tex>, <tex>Y_2</tex>, ..., <tex>Y_k</tex>. Однако, поскольку <tex>P</tex> детерминирован, осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению <tex>w</tex>. |
Версия 00:05, 5 января 2015
Эта статья находится в разработке!
Теоремы
Теорема (1): |
Если для некоторого ДМП автомата , то имеет однозначную КС-грамматику |
Доказательство: |
Утверждаем, что конструкция теоремы порождает однозначную КС-грамматику , когда МП-автомат, к которому она применяется, детерминирован. Вначале вспомним (см. теорему 5.29), что для однозначности грамматики достаточно показать, что она имеет уникальные левые порождения. Предположим, допускает по пустому магазину. Тогда он делает это с помощью одной-единственной последовательности переходов, поскольку он детерминирован и не может работать после опустошения магазина. Зная эту последовательность переходов, мы можем однозначно определить выбор каждой продукции в левом порождении в . Правило автомата , на основании которого применяется продукция, всегда одно. Но правило, скажем, , может порождать много продукций грамматики , с различными состояниями в позициях, отражающих состояния после удаления каждого из , , ..., . Однако, поскольку детерминирован, осуществляется только одна из этих последовательностей переходов, поэтому только одна из этих продукций в действительности ведет к порождению . |
Теорема (2): |
Если для некоторого ДМП-автомата , то имеет однозначную КС-грамматику |
Доказательство: |
Пусть теореме 1 существует однозначная грамматика , порождающая язык , т.е. . будет “концевым маркером”, отсутствующим в цепочках языка , и пусть . Таким образом, цепочки языка представляют собой цепочки из , к которым дописан символ . Тогда имеет префиксное свойство, и для некоторого ДМП-автомата . ПоТеперь по грамматике Утверждаем, что построим , для которой . Для этого нужно лишь избавиться от маркера в цепочках. Будем рассматривать как переменную грамматики и введем продукцию ; остальные продукции и одинаковы. Поскольку , получаем, что . однозначна. Действительно, левые порождения в совпадают с левыми порождениями в , за исключением последнего шага в — изменения на . Таким образом, если бы терминальная цепочка имела два левых порождения в , то имела бы два порождения в . Поскольку однозначна, также однозначна. |