Двудольные графы и раскраска в 2 цвета — различия между версиями
Строка 4: | Строка 4: | ||
}} | }} | ||
− | Так как множество вершин двудольного графа можно разделить на 2 независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества <tex>\Rightarrow</tex> граф <tex>G = (W,E)</tex> - 2-раскрашиваем. | + | Так как множество вершин двудольного графа можно разделить на 2 независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества <tex>\Rightarrow</tex> граф <tex>G = (W,E)</tex> - 2-раскрашиваем. <tex>\chi(G) = 2</tex>. |
Версия 02:43, 25 октября 2010
Определение: |
Неориентированный граф | называется двудольным, если множество его вершин можно разбить на две части , так, что ни одна вершина в не соединена с вершинами в и ни одна вершина в не соединена с вершинами в .
Так как множество вершин двудольного графа можно разделить на 2 независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества граф - 2-раскрашиваем. .