Рёберный граф — различия между версиями
SergeyBud (обсуждение | вклад) |
SergeyBud (обсуждение | вклад) |
||
Строка 31: | Строка 31: | ||
|id=euler_gam | |id=euler_gam | ||
|statement=Если граф <tex>G</tex> {{---}} [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#euler_graph|Эйлеров граф]], то его рёберный граф является [[Гамильтоновы_графы#hamiltonian_graph|Гамильтоновым графом]]. | |statement=Если граф <tex>G</tex> {{---}} [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#euler_graph|Эйлеров граф]], то его рёберный граф является [[Гамильтоновы_графы#hamiltonian_graph|Гамильтоновым графом]]. | ||
+ | |proof=Рассмотрим Эйлеров путь <tex>e_{i_1},v_{k_1},e_{i_2},...,v_{k_{n-1}},e_{i_n}</tex> в исходном графе <tex>G</tex>. Составим из вершин реберного графа <tex>L(G)</tex> последовательность <tex>v_{j_1},...,v_{j_n}</tex>, поcтавив в соответсвие ребру <tex>e_{i_k}</tex> вершину <tex>v_{j_k}</tex>. Так как два подряд идущих ребра <tex>e_{i_k},e_{i_{k+1}}</tex> из исходного пути смежны, то из определения реберного графа следует, что сответствующие подряд идущие вершины в получившейся последовательности <tex>v_{j_k},v_{j_{k+1}}</tex> смежны. Следовательно мы получили Гамильтонов путь <tex>v_{j_1},e_{t_1},...,e_{t_{n-1}},v_{j_n}</tex> в реберном графе <tex>L(G)</tex>. Доказательство для циклов аналогично. | ||
}} | }} | ||
{{Утверждение | {{Утверждение | ||
Строка 37: | Строка 38: | ||
{{Утверждение | {{Утверждение | ||
|statement=Реберный граф реберного графа <tex>L(G)</tex> '''не''' является исходным графом <tex>G</tex>. | |statement=Реберный граф реберного графа <tex>L(G)</tex> '''не''' является исходным графом <tex>G</tex>. | ||
− | |proof=Контрпримером является граф и раздела [[#Построение|Построение]]. | + | |proof=Контрпримером является граф и раздела [[#Построение|Построение]]. В реберном графе количество вершин равно количеству ребер в исходном. Таким образом, в реберном графе к графу <tex>L(G)</tex> будет <tex>9</tex> вершин, а в исходном графе <tex>G</tex> их всего <tex>5</tex>. |
}} | }} | ||
Версия 01:24, 11 января 2015
Определение: |
Пусть задан граф
| , тогда его рёберным графом называется граф, для которого верны следующие утверждения
Построение
Граф | Новые вершины | Добавлены рёбра в | Рёберный граф |
Свойства
Утверждение: |
Рёберный граф связного графа связен. |
Если путь, соединяющий любые два его ребра, что переводится в путь графа , содержащий любые две вершины графа . | связен, он содержит
Утверждение: |
Задача о максимальном независимом множестве для рёберного графа соответствует задаче нахождения максимального паросочетания в исходном графе. |
Утверждение: |
Рёберное хроматическое число графа равно вершинному хроматическому числу его рёберного графа . |
Утверждение: |
Рёберный граф рёберно-транзитивного графа является вершинно-транзитивным графом. |
Утверждение: |
Если граф Эйлеров граф, то его рёберный граф является Гамильтоновым графом. — |
Рассмотрим Эйлеров путь | в исходном графе . Составим из вершин реберного графа последовательность , поcтавив в соответсвие ребру вершину . Так как два подряд идущих ребра из исходного пути смежны, то из определения реберного графа следует, что сответствующие подряд идущие вершины в получившейся последовательности смежны. Следовательно мы получили Гамильтонов путь в реберном графе . Доказательство для циклов аналогично.
Утверждение: |
Ребра графа можно разбить на полные подграфы таким образом, чтобы ни одна из вершин не принадлежала более чем двум подграфам. |
Утверждение: |
Реберный граф реберного графа не является исходным графом . |
Контрпримером является граф и раздела Построение. В реберном графе количество вершин равно количеству ребер в исходном. Таким образом, в реберном графе к графу будет вершин, а в исходном графе их всего . |
Теорема: |
Если — это -граф с вершинами, имеющими степени , то имеет вершин и ребер, где
|
Доказательство: |
По определению реберного графа граф имеет вершин. Каждые ребер, инцидентных вершине , дают вклад в число ребер графа , так что |
Источники информации
- Wikipedia — Реберные графы
- Харари Фрэнк Теория графов: Пер. с англ./ Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 296 с. — ISBN 978-5-397-00622-4.(Глава 8: Реберные графы. стр. 91-104)