Неотделимые множества — различия между версиями
Строка 6: | Строка 6: | ||
Рассмотрим функцию <tex>f(n) = U(n, n) + 1</tex>, где <tex>U(n, n)</tex> {{---}} [[Диагональный метод|универсальная функция]]. | Рассмотрим функцию <tex>f(n) = U(n, n) + 1</tex>, где <tex>U(n, n)</tex> {{---}} [[Диагональный метод|универсальная функция]]. | ||
− | Предположим, у нее существует всюду определенное продолжение <tex>g(n) | + | Предположим, у нее существует всюду определенное продолжение <tex>g(n) \Rightarrow f(n) \neq \bot \Rightarrow g(n) = f(n)</tex> и <tex> \forall n \in \mathbb{N} \ g(n) \neq \bot</tex>. |
− | По определению универсальной функции <tex>g(n) = U(i, n)</tex> для некоторого <tex>i | + | По определению универсальной функции <tex>g(n) = U(i, n)</tex> для некоторого <tex>i \Rightarrow g(i) = U(i, i)</tex>. |
+ | |||
+ | Поскольку <tex>g(n)</tex> всюду определена, то <tex>U(i, i) \neq \bot</tex>. Значит, определено значение <tex>f(i)</tex> и <tex>g(i) = f(i) = U(i, i) + 1</tex>. Получили противоречие. | ||
Таким образом, построенная функция <tex>f(n)</tex> не имеет всюду определенного вычислимого продолжения. | Таким образом, построенная функция <tex>f(n)</tex> не имеет всюду определенного вычислимого продолжения. | ||
Строка 25: | Строка 27: | ||
\end{cases}</tex> | \end{cases}</tex> | ||
− | Предположим, у нее существует всюду определенное продолжение <tex>g(n)</tex>. | + | Предположим, у нее существует всюду определенное продолжение <tex>g(n) = U(i, n)</tex> для некоторого <tex>i</tex>. |
− | <tex>g( | + | Поскольку <tex>g(n)</tex> всюду определена, то <tex>g(i) = U(i, i) \neq \bot</tex> и определено значение <tex>f(i)</tex>. Но по построению функции <tex>f(n)</tex> видим, что <tex>f(i) \neq U(i, i)</tex>. Получили противоречие. |
− | |||
− | <tex>g(i) = | ||
}} | }} | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Существуют такие непересекающиеся перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \subset X</tex>, <tex>Y' \subset Y</tex>, <tex>X \cap Y = \O</tex>, <tex>X \cup Y = \mathbb{N}</tex>. Такие множества <tex>X'</tex> и <tex>Y'</tex> называют '''неотделимыми'''. | + | Существуют такие непересекающиеся перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \subset X</tex>, <tex>Y' \subset Y</tex>, <tex>X \cap Y = \O</tex>, <tex>X \cup Y = \mathbb{N}</tex>. Такие множества <tex>X'</tex> и <tex>Y'</tex> называют '''неотделимыми''' (англ. ''inseparable sets''). |
|proof= | |proof= | ||
− | Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где <tex>f(n)</tex> - функция из леммы 2. | + | Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где <tex>f(n)</tex> {{---}} функция из леммы 2. |
− | Пусть существуют <tex>X</tex> и <tex>Y</tex>, удовлетворяющие указанным свойствам | + | Пусть существуют <tex>X</tex> и <tex>Y</tex>, удовлетворяющие указанным свойствам, тогда вычислима характеристическая функция <tex>g(n) = \begin{cases} |
− | 1 & n \in Y \\ | + | 1, & n \in Y \\ |
− | 0 & n \notin Y (n \in X) | + | 0, & n \notin Y (n \in X) |
− | \end{cases}</tex> | + | \end{cases}</tex> множества <tex>Y</tex>. |
Заметим, что <tex>g(n)</tex> всюду определена и является продолжением <tex>f(n)</tex>, что противоречит лемме 2. | Заметим, что <tex>g(n)</tex> всюду определена и является продолжением <tex>f(n)</tex>, что противоречит лемме 2. | ||
Строка 49: | Строка 49: | ||
* Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 20, с. 68. ISBN 5-900916-36-7 | * Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 20, с. 68. ISBN 5-900916-36-7 | ||
+ | * [http://en.wikipedia.org/wiki/Recursively_inseparable_sets Wikipedia - Recursively inseparable sets] | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Теория вычислимости]] | [[Категория: Теория вычислимости]] |
Версия 22:00, 12 января 2015
Лемма (1): |
Существует вычислимая функция, не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию универсальная функция. , где —Предположим, у нее существует всюду определенное продолжение и .По определению универсальной функции для некоторого .Поскольку Таким образом, построенная функция всюду определена, то . Значит, определено значение и . Получили противоречие. не имеет всюду определенного вычислимого продолжения. |
Лемма (2): |
Существует вычислимая функция, значения которой принадлежат множеству , не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию Предположим, у нее существует всюду определенное продолжение Поскольку для некоторого . всюду определена, то и определено значение . Но по построению функции видим, что . Получили противоречие. |
Теорема: |
Существуют такие непересекающиеся перечислимые множества и , что не существует таких разрешимых множеств и , что , , , . Такие множества и называют неотделимыми (англ. inseparable sets). |
Доказательство: |
Рассмотрим множества и , где — функция из леммы 2.Пусть существуют Заметим, что и , удовлетворяющие указанным свойствам, тогда вычислима характеристическая функция множества . всюду определена и является продолжением , что противоречит лемме 2. |
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 20, с. 68. ISBN 5-900916-36-7
- Wikipedia - Recursively inseparable sets