Числа Стирлинга второго рода — различия между версиями
Строка 211: | Строка 211: | ||
* <tex dpi = "180">\lbrace{n+1\atop k+1}\rbrace</tex> — количество наборов из <tex>k</tex> попарно непересекающихся подмножеств исходного множества <tex>\{1,2...n\}</tex>. Например, <tex dpi = "180">\lbrace{4\atop 3}\rbrace</tex><tex dpi = "130"> = 6</tex>, так как всего шесть наборов из двух непересекающихся подмножеств множества <tex>\{1,2,3\}</tex>: <tex>\{(1)(23)\},\{(12)(3)\}, \{(13)(2)\}, \{(1)(2)\}, \{(1)(3)\}, \{(2)(3)\}</tex>. | * <tex dpi = "180">\lbrace{n+1\atop k+1}\rbrace</tex> — количество наборов из <tex>k</tex> попарно непересекающихся подмножеств исходного множества <tex>\{1,2...n\}</tex>. Например, <tex dpi = "180">\lbrace{4\atop 3}\rbrace</tex><tex dpi = "130"> = 6</tex>, так как всего шесть наборов из двух непересекающихся подмножеств множества <tex>\{1,2,3\}</tex>: <tex>\{(1)(23)\},\{(12)(3)\}, \{(13)(2)\}, \{(1)(2)\}, \{(1)(3)\}, \{(2)(3)\}</tex>. | ||
− | * Обозначим как <tex dpi = "180">\lbrace{n\atop k}\rbrace^d</tex> количество всех способов разбиений множества <tex>n</tex> натуральных чисел на <tex>k</tex> подмножеств, в которых расстояния между двумя любыми элементами <tex>i</tex>, <tex>j</tex> не меньше <tex>d</tex> <tex>(|i-j| \ | + | * Обозначим как <tex dpi = "180">\lbrace{n\atop k}\rbrace^d</tex> количество всех способов разбиений множества <tex>n</tex> натуральных чисел на <tex>k</tex> подмножеств, в которых расстояния между двумя любыми элементами <tex>i</tex>, <tex>j</tex> не меньше <tex>d</tex> <tex>(|i-j| \geqslant d)</tex>. Тогда <tex dpi = "180">\lbrace{n\atop k}\rbrace^d = \lbrace{n-d+1\atop k-d+1}\rbrace,</tex><tex dpi = "150"> n \geqslant k \geqslant d</tex> |
* Также числа Стирлинга II рода можно определить как коэффициенты в разложении обычных степеней на факториальные: <tex dpi = "150">x^n = \sum_{k=0}^n \textstyle \lbrace{n\atop k}\rbrace x^{\underline{k}} = \sum_{k=0}^n \textstyle \lbrace{n\atop k}\rbrace (-1)^{n-k} x^{\overline{k}}</tex>, где <tex dpi = "150">x^{\underline{k}} = x\cdot (x-1)\cdot \ldots\cdot (x-k+1)</tex> — убывающий факториал, <tex dpi = "150">x^{\overline{k}} = x\cdot (x+1)\cdot \ldots\cdot (x+k-1)</tex> — возрастающий факториал. См. также [[Числа Стирлинга первого рода#Связь между числами Стирлинга | связь между числами Стирлинга]]. | * Также числа Стирлинга II рода можно определить как коэффициенты в разложении обычных степеней на факториальные: <tex dpi = "150">x^n = \sum_{k=0}^n \textstyle \lbrace{n\atop k}\rbrace x^{\underline{k}} = \sum_{k=0}^n \textstyle \lbrace{n\atop k}\rbrace (-1)^{n-k} x^{\overline{k}}</tex>, где <tex dpi = "150">x^{\underline{k}} = x\cdot (x-1)\cdot \ldots\cdot (x-k+1)</tex> — убывающий факториал, <tex dpi = "150">x^{\overline{k}} = x\cdot (x+1)\cdot \ldots\cdot (x+k-1)</tex> — возрастающий факториал. См. также [[Числа Стирлинга первого рода#Связь между числами Стирлинга | связь между числами Стирлинга]]. | ||
Строка 220: | Строка 220: | ||
Числа Стирлинга II рода образуют матрицу переходов в линейном пространстве полиномов от базиса обычных степеней к базису убывающих факториальных степеней. | Числа Стирлинга II рода образуют матрицу переходов в линейном пространстве полиномов от базиса обычных степеней к базису убывающих факториальных степеней. | ||
|proof= | |proof= | ||
− | <tex dpi = "150">x^{\underline{k+1}}=x^{\underline{k}}(x-k)</tex>, отсюда <tex dpi = "150">x\cdot x^{\underline{k}}=x^{\underline{k+1}}+kx^{\underline{k}}</tex>, следовательно, <tex dpi = "150">x\cdot x^{\underline{n-1}}</tex> есть <br> <tex dpi = "150">x\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace x^{\underline{k}}=\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace x^{\underline{k+1}}+\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace kx^{\underline{k}}=</tex> <br> <tex dpi = "150">\sum_{k=0}^n \textstyle \lbrace{n-1\atop k-1}\rbrace x^{\underline{k}}+\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace kx^{\underline{k}}= </tex> <tex dpi = "150">\sum_{k=0}^n \textstyle (k\lbrace{n-1\atop k}\rbrace + \lbrace{n-1\atop k-1}\rbrace )x^{\underline{k}}=\sum_{k=0}^n \textstyle \lbrace{n\atop k}\rbrace x^{\underline{k}} </tex> | + | <tex dpi = "150">x^{\underline{k+1}}=x^{\underline{k}}(x-k)</tex>, отсюда <tex dpi = "150">x\cdot x^{\underline{k}}=x^{\underline{k+1}}+kx^{\underline{k}}</tex>, следовательно, <tex dpi = "150">x\cdot x^{\underline{n-1}}</tex> есть <br> <br> <tex dpi = "150">x\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace x^{\underline{k}}=\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace x^{\underline{k+1}}+\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace kx^{\underline{k}}=</tex> <br> <br> <tex dpi = "150">\sum_{k=0}^n \textstyle \lbrace{n-1\atop k-1}\rbrace x^{\underline{k}}+\sum_{k=0}^n \textstyle \lbrace{n-1\atop k}\rbrace kx^{\underline{k}}= </tex> <br> <br> <tex dpi = "150">\sum_{k=0}^n \textstyle (k\lbrace{n-1\atop k}\rbrace + \lbrace{n-1\atop k-1}\rbrace )x^{\underline{k}}=\sum_{k=0}^n \textstyle \lbrace{n\atop k}\rbrace x^{\underline{k}} </tex> |
}} | }} | ||
+ | |||
+ | == См. также == | ||
+ | [http://neerc.ifmo.ru/wiki/index.php?title=%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_I_%D0%B8_II_%D1%80%D0%BE%D0%B4%D0%B0 Числа Эйлера] | ||
== Источники информации== | == Источники информации== |
Версия 20:53, 15 января 2015
Числа Стирлинга второго рода (англ. stirling numbers of the second kind) — количество способов разбиения множества из
элементов на непустых подмножеств. Числа Стирлинга II рода обозначаются как или .Содержание
Пример
Существует семь способов разбиения четырехэлементного множества на две части:
Следовательно,
.Вычисление
Рекуррентное соотношение
Если задано множество из
элементов, которое необходимо разбить на непустых частей, то последний элемент исходного множества можно либо поместить в отдельную часть ( способами), либо поместить его в некоторое подмножество ( способами, поскольку каждый из способов распределения первых элементов по непустым частям дает подмножеств, с которыми можно объединить последний элемент).
Таблица значений
n\k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | |||||||||
1 | 0 | 1 | ||||||||
2 | 0 | 1 | 1 | |||||||
3 | 0 | 1 | 3 | 1 | ||||||
4 | 0 | 1 | 7 | 6 | 1 | |||||
5 | 0 | 1 | 15 | 25 | 10 | 1 | ||||
6 | 0 | 1 | 31 | 90 | 65 | 15 | 1 | |||
7 | 0 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | ||
8 | 0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 | |
9 | 0 | 1 | 255 | 3025 | 7770 | 6951 | 2646 | 462 | 36 | 1 |
Частные случаи
Свойства
- число Стирлинга первого рода , , где —
- , где — число Белла (число всех неупорядоченных разбиений n-элементного множества)
Применения
- Пусть дано множество из элементарных исходов (все исходы равновероятны). Вероятность того, что после проведенных экспериментов каждое событие произойдет хотя бы один раз, может быть найдена по следующей формуле:
- — количество наборов из попарно непересекающихся подмножеств исходного множества . Например, , так как всего шесть наборов из двух непересекающихся подмножеств множества : .
- Обозначим как количество всех способов разбиений множества натуральных чисел на подмножеств, в которых расстояния между двумя любыми элементами , не меньше . Тогда
- Также числа Стирлинга II рода можно определить как коэффициенты в разложении обычных степеней на факториальные: связь между числами Стирлинга. , где — убывающий факториал, — возрастающий факториал. См. также
Переход от базиса обычных степеней к базису убывающих факториальных степеней
Теорема: |
Числа Стирлинга II рода образуют матрицу переходов в линейном пространстве полиномов от базиса обычных степеней к базису убывающих факториальных степеней. |
Доказательство: |
| , отсюда , следовательно, есть
См. также
Источники информации
- Wikipedia — Stirling numbers of the second kind
- OEIS
- Р. Грэхем, Д. Кнут, О. Паташник Конкретная математика. Основание информатики.—М.:Мир, 1998.—с. 288.— ISBN 5-03-001793-3