Задание по КСЕ физика 3 — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Задание 2)
Строка 14: Строка 14:
 
'''Подсказка к решению:''' Известно, что <tex> \nabla \cdot \vec{V} = 0 </tex>. Из этого следует <tex> \exists \vec{A} :\ \vec{V} = \nabla \times \vec{A} </tex>
 
'''Подсказка к решению:''' Известно, что <tex> \nabla \cdot \vec{V} = 0 </tex>. Из этого следует <tex> \exists \vec{A} :\ \vec{V} = \nabla \times \vec{A} </tex>
  
<tex> \vec{\Omega} = \nabla \times (\nabla \times \vec{A}) = \nabla \cdot (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} </tex>; поскольку первое слагаемое равно <tex> 0 </tex>, то <tex> \nabla^2 \vec{A} = -\vec{\Omega} </tex>
+
<tex> \vec{\Omega} = \nabla \times (\nabla \times \vec{A}) = \nabla \cdot (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} </tex>; поскольку можно подобрать <tex> \vec{A} </tex> такое, что <tex> \nabla \cdot \vec{A} = 0 </tex> <ref> [http://scask.ru/book_s_phis2.php?id=162] </ref>, то <tex> \nabla^2 \vec{A} = -\vec{\Omega} </tex>
  
 
Дальше аналогично первому заданию.
 
Дальше аналогично первому заданию.
 
  
 
== Задание 3 ==
 
== Задание 3 ==

Версия 20:44, 30 апреля 2015

Задание 1

[math] \vec{V}(\vec{r}) [/math] — поле скоростей, индуцированное заданным распределённым источником. Его объёмная плотность интенсивности равна [math] q \quad (q \cdot dW = dQ) [/math] [1]

  1. [math] \phi(\vec{r}) \ - \ ? [/math] (Подсказка: использовать принцип суперпозиции)
  2. [math] \vec{V} = \nabla \cdot \phi \ - \ ? [/math]
  3. [math] \nabla \cdot \vec{V} \ - \ ? [/math]

Примечание: Казалось бы, [math] \nabla \cdot \vec{V} = \nabla \cdot (\nabla \cdot \phi) = \nabla^2 \cdot \phi = q [/math], но если провести решение должным образом, ответ получится не такой, необходимо понять почему. [2]

Задание 2

[math] \vec{V}(\vec{r}) [/math] — индуцированное заданной вихревой областью поле

TODO: А что найти-то надо?

Подсказка к решению: Известно, что [math] \nabla \cdot \vec{V} = 0 [/math]. Из этого следует [math] \exists \vec{A} :\ \vec{V} = \nabla \times \vec{A} [/math]

[math] \vec{\Omega} = \nabla \times (\nabla \times \vec{A}) = \nabla \cdot (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} [/math]; поскольку можно подобрать [math] \vec{A} [/math] такое, что [math] \nabla \cdot \vec{A} = 0 [/math] [3], то [math] \nabla^2 \vec{A} = -\vec{\Omega} [/math]

Дальше аналогично первому заданию.

Задание 3

Есть вихревая трубка. Надо найти TODO:

[math] \int\limits_S \vec{\Omega} \cdot \vec{n} \, dS = \oint_l \vec{V} \cdot \vec{\tau} \cdot \, dl = r = const [/math]

Должен получится закон Био-Савара-Лапласа, только для жидкости [4] [5]


Задание 4

Найти [math] \vec{V}(\vec{r}) [/math] и [math] p(\vec{r}) [/math], возникающих при обтекании неподвижной сферы потоком идеальной несжимаемой жидкости.

Подсказка: удобно решать в сферической системе координат. Тогда нужно найти [math] V_r (\vec{r}, \beta) ,\ V_{\beta}(\vec{r}, \beta) ,\ p(\vec{r}, \beta) [/math] (у скорости только две интересующих нас компоненты в следствие симметричности относительно одной из осей)

Подсказка: Наиболее очевидный вариант — написать уравнение Лапласа, задать начальные условия и решать получающуюся систему, это слегка трудоёмкая задача.[6] [7]

Есть вариант проще: представить поле скорости как суперпозицию поля скорости, индуцируемого диполем, расположенным в центре сферы, и набегающей [math] \vec{V}_{\infty} [/math]; нужно будет подобрать подходящий дипольный момент [math] \vec{D} [/math]


Источники информации

  1. Лойцянский Л. Г. Механика жидкости и газа, с. 395
  2. (Думали что-то интересное написано? А здесь ничего нет. Но раз вы это читаете, можете добавить ссылок на литературу и полезные сайты по этому примеру)
  3. [1]
  4. Решение из Лекций по гидроаэромеханике
  5. Лойцянский Л. Г. Механика жидкости и газа, с. 399
  6. Решение из Лекций по гидроаэромеханике
  7. Лойцянский Л. Г. Механика жидкости и газа, с. 407