Статистики на отрезках. Корневая эвристика — различия между версиями
Kamensky (обсуждение | вклад) м (to -> ...) |
(→Источники) |
||
Строка 87: | Строка 87: | ||
</code> | </code> | ||
− | ==Источники== | + | ==Источники информации== |
* [http://www.e-maxx.ru/algo/sqrt_decomposition Maximal:: algo:: Sqrt - декомпозиция] | * [http://www.e-maxx.ru/algo/sqrt_decomposition Maximal:: algo:: Sqrt - декомпозиция] | ||
* [http://habrahabr.ru/post/138946/#habracut Sqrt-декомпозиция (корневая оптимизация)] | * [http://habrahabr.ru/post/138946/#habracut Sqrt-декомпозиция (корневая оптимизация)] |
Версия 13:20, 6 мая 2015
Корневая эвристика (Sqrt-декомпозиция) — это метод, или структура данных, которая позволяет выполнять ассоциативные операции над отрезками (например, суммирование элементов, нахождение минимума/максимума и т.д.) за
.Построение
Пусть нам дан массив
размерности . Cделаем следующие действия:- разделим массив на блоки длины ;
- в каждом блоке заранее посчитаем необходимую нам операцию;
- результаты подсчета запишем в массив размерности , где — количество блоков.
Пример реализации построения массива
build() for i = 0 ... cnt B[i] = neutral // neutral - нейтральный элемент для операцииfor i = 0 ... n - 1 B[i / len] = B[i / len] A[i]
Построение, очевидно, происходит за времени.
Обработка запроса
Пусть мы получили запрос на выполнение операции на отрезке
. Отрезок может охватить некоторые блоки массива полностью, а так же не более двух блоков (начальный и конечный) — не полностью.Таким образом, для того чтобы найти результат операции на отрезке
нам необходимо вручную выполнить ее на "хвостах", а потом выполнить ее для полученного результата и полных блоков, значения которых мы посчитали заранее.Пример реализации обработки запроса:
- операция, для которой было сделано построение.
query(l, r) left = l / len right = r / len end = (left + 1) * len - 1 res = neutral // neutral - нейтральный элемент для операцииif left == right for i = l ... r res = res A[i] else for i = l ... end res = res A[i] for i = left + 1 ... right - 1 res = res B[i] for i = right * len ... r res = res A[i]
Размер каждого из "хвостов", очевидно, не превосходит длины блока , а количество блоков не превосходит . Поскольку и , и мы выбирали , то для выполнения операции на отрезке нам понадобится времени.
Запрос на изменение элемента
Реализация данного запроса будет зависеть от того, имеет ли операция, для которой мы сделали построение, обратную операцию и обладает ли она свойством коммутативности.
- если оба условия выполняются, то запрос на изменение элемента мы можем сделать за времени;
- если хотя бы одно из условий не выполняется, то запрос на изменение элемента можно сделать за времени.
Примеры реализации:
— номер элемента из массива , который необходимо заменить; — новое значение для данного элемента.
— операция, для которой было сделано построение.
Запрос на изменение элемента для операции, у которой есть обратная операция, и выполняется свойство коммутативности:
set(p, newValue) tmp = B[p / len]inverse(A[p]) // inverse(A[p]) - обратный элемент A[p] = newValue B[p / len] = tmp newValue
Запрос на изменение элемента для операции, у которой хотя бы одно из условий не выполняется:
set(p, newValue) index = len * (p / len) A[p] = newValue B[p / len] = neutral // neutral - нейтральный элемент для операцииfor i = index ... index + len - 1 B[p / len] = B[p / len] A[i]