Избыточное кодирование, код Хэмминга — различия между версиями
Glukos (обсуждение | вклад) |
Glukos (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
== Код, определяющий одну ошибку == | == Код, определяющий одну ошибку == | ||
− | Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x: <tex>0110..10x</tex>, такой, чтобы сумма всех | + | Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x: <tex>0110..10x</tex>, такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера. |
== Кодирование Хэмминга == | == Кодирование Хэмминга == | ||
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. | Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. | ||
− | Рассмотрим простой пример | + | Рассмотрим простой пример <tex>-</tex> закодируем четыре бита: <tex>a, b, c, d</tex>. Полученный код будет иметь длину 8 бит и выглядеть следующим образом: <tex>a,b,c,d, a \oplus b, c \oplus d, a \oplus c, b \oplus d.</tex> |
Рассмотрим табличную визуализацию кода: | Рассмотрим табличную визуализацию кода: | ||
Строка 18: | Строка 18: | ||
|} | |} | ||
− | Как видно из таблицы, даже если один из битов <tex>a, b, c, d</tex> передался с ошибкой, содержащие его <tex>xor | + | Как видно из таблицы, даже если один из битов <tex>a, b, c, d</tex> передался с ошибкой, содержащие его <tex>xor</tex>-суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит. |
+ | |||
+ | По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в <tex>2^k</tex> бит. Для получения её кода добавим к ней <tex>k</tex> пар бит по следующему принципу: | ||
+ | *Первая пара: сумма четных бит и сумма нечетных бит | ||
+ | *Вторая пара: сумма тех бит, в чьем номере второй бит с конца ноль и сумма тех бит, в чьем номере второй бит с конца единица | ||
+ | ... | ||
+ | *<tex>K</tex>-тая пара: сумма тех бит, в чьем номере <tex>k</tex>-тый бит с конца ноль и сумма тех бит, в чьем номере <tex>k</tex>-тый бит с конца единица | ||
+ | |||
+ | Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных <tex>k</tex> пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар <tex>k</tex>, следовательно мы имеем <tex>k</tex> бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит <tex>2^k</tex>. |
Версия 02:43, 31 октября 2010
Эта статья находится в разработке!
Избыточное кодирование - вид кодирования, использующий избыточное количество информации с целью последующего контроля целостности данных при записи/воспроизведении информации или при её передаче по линиям связи.
Код, определяющий одну ошибку
Увеличив объем кода на 1 бит, можно получить возможность определять при передаче наличие одной ошибки. Для этого к коду нужно добавить бит x:
, такой, чтобы сумма всех единиц была четной. В случае, если контрольная сумма окажется нечетной, следует отправить запрос на повторную посылку элемента, в котором была обнаружена ошибка. Такое кодирование применяется только если вероятность ошибки крайне мала, например, в оперативной памяти компьютера.Кодирование Хэмминга
Кодирование Хэмминга предусматривает как возможность обнаружения ошибки, так и возможность её исправления. Рассмотрим простой пример
закодируем четыре бита: . Полученный код будет иметь длину 8 бит и выглядеть следующим образом: Рассмотрим табличную визуализацию кода:Как видно из таблицы, даже если один из битов
передался с ошибкой, содержащие его -суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит.По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в
бит. Для получения её кода добавим к ней пар бит по следующему принципу:- Первая пара: сумма четных бит и сумма нечетных бит
- Вторая пара: сумма тех бит, в чьем номере второй бит с конца ноль и сумма тех бит, в чьем номере второй бит с конца единица
...
- -тая пара: сумма тех бит, в чьем номере -тый бит с конца ноль и сумма тех бит, в чьем номере -тый бит с конца единица
Легко понять, что если в одном бите из строки допущена ошибка, то с помощью дописанных
пар бит можно точно определить, какой именно бит ошибочный. Это объясняется тем, что каждая пара определяет один бит номера ошибочного бита в строке. Всего пар , следовательно мы имеем бит номера ошибочного бита, что вполне достаточно: общее число бит строки не превосходит .