Изменения

Перейти к: навигация, поиск

Диаграмма Вороного

4753 байта добавлено, 12:42, 10 мая 2015
Связь с триангуляцией Делоне
=== Связь с триангуляцией Делоне ===
{{Определение|definition=Наибольшая пустая окружность точки <tex>q</tex> по отношению к <tex>P</tex> (<tex>C_P(q)</tex>) — наибольшая окружность с центром в <tex>q</tex> такая, что во внутренности соответствующего ей круга не лежит ни одного сайта из <tex>P</tex>.}} {{Лемма|statement=Точка <tex>q</tex> — вершина диаграммы Вороного в том и только в том случае, когда <tex>C_P(q)</tex> содержит три и более сайтов на своей границе.|proof=Предположим, что <tex>q</tex> существует, а <tex>p_i, \ p_j, \ p_k</tex> — соответствующие точки. Так как внутри <tex>C_P(q)</tex> нет других сайтов, <tex>q</tex> должна быть на границе <tex>\mathcal{V}(p_i), \ \mathcal{V}(p_j), \ \mathcal{V}(p_k)</tex> одновременно, то есть вершиной диаграмму.Докажем в другую сторону: каждая вершина <tex>q</tex> диаграммы инцидентна минимум трём рёбрам, и, поэтому, как минимум трём ячейкам <tex>\mathcal{V}(p_i), \ \mathcal{V}(p_j), \ \mathcal{V}(p_k)</tex>. Тогда <tex>q</tex> лежит на равном расстоянии от <tex>p_i, \ p_j, \ p_k</tex> и не может быть другого сайта ближе к <tex>q</tex>, так как иначе <tex>\mathcal{V}(p_i), \ \mathcal{V}(p_j), \ \mathcal{V}(p_k)</tex> не сойдутся в <tex>q</tex>. Поэтому можно построить окружность с центром в <tex>q</tex> и <tex>p_i, \ p_j, \ p_k</tex> на границе так, что внутри не будет других сайтов.}} {{Лемма|statement=Серединный перпендикуляр к отрезку <tex>p_i p_j</tex> образует ребро диаграммы Вороного в том и только в том случае, если на нём есть точка <tex>q</tex> такая, что <tex>C_P(q)</tex> содержит на своей границе только сайты <tex>p_i, \ p_j</tex>.|proof=[[Файл:voronoi-circles.png|200px|thumb|right]]Предположим, что <tex>q</tex> существует. Тогда, так как <tex>C_P(q)</tex> не содержит в себе сайтов и содержит <tex>p_i, \ p_j</tex> на границе, <tex> \rho(q, p_i) = \rho(q, p_j) \leqslant \rho(q, p_k), \ 1 \leqslant k \leqslant n</tex>. Отсюда выходит, что <tex>q</tex> лежит — вершина <tex>Vor(P)</tex> или лежит на ребре диаграммы. Но по предыдущей лемме выходит, что <tex>q</tex> не может быть вершиной диаграммы. Значит, она лежит на ребре, заданном серединным перпендикуляром к <tex>p_i p_j</tex>.Докажем в другую сторону: пусть серединный перпендикуляр к <tex>p_i p_j</tex> задаёт ребро диаграммы. Наибольшая пустая окружность любой точки <tex>q</tex> на этом ребре должна содержать на границе <tex>p_i</tex> и <tex>p_j</tex>, и никаких других сайтов внутри.}} {{Теорема|statement=Если соединить все сайты, соответствующие смежным ячейкам диаграммы Вороного, получится триангуляция Делоне для этого множества точек.|proof=Если ячейки, соответствующие сайтам <tex>p_i, \ p_j</tex>, смежны, то серединный перпендикуляр к отрезку <tex>p_i p_j</tex> образует ребро диаграммы Вороного, то есть к нему применима предыдущая лемма и можно построить окружность с <tex>p_i</tex> и <tex>p_j</tex> на границе, внутри которой не будет других сайтов. [[Триангуляция Делоне#Критерий Делоне для рёбер|Вспомним]], что триангуляции Делоне принадлежат те и только те рёбра (с поправкой на точки, лежащие на одной окружности), на которых можно построить такую окружность, что внутри неё не будет лежать никаких точек. Тогда ребро <tex>p_i p_j</tex> является ребром триангуляции Делоне.}}
==Обозначения и определения==
418
правок

Навигация