Участник:Dominica — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Разделители: -страшный черновик-)
Строка 12: Строка 12:
 
'''Идеальным разделителем''' будем называть сеть, выходные провода которой разделены на K  блоков одинакового размера, таких, что принимая на вход любые <tex>a</tex> значений, сеть размещает первые <tex>a/k</tex> минимальные по величине  ключи в первый блок, следующие <tex>a/k</tex> по величине ключи – во второй, и т.д.
 
'''Идеальным разделителем''' будем называть сеть, выходные провода которой разделены на K  блоков одинакового размера, таких, что принимая на вход любые <tex>a</tex> значений, сеть размещает первые <tex>a/k</tex> минимальные по величине  ключи в первый блок, следующие <tex>a/k</tex> по величине ключи – во второй, и т.д.
 
}}
 
}}
Эти идеальные разделители могут быть использованы как модули для построения сортирующей сети на <tex>N</tex>  входов, где <tex>N  = k^d</tex> для некоторого положительного числа d. Такая сеть будет представлять собой композицию сетей <tex>N_0, N_1, N_2 .. N_{d-1}</tex>, где <tex>N_t</tex> – парраллельная композиция <tex>k^t</tex> идеальных разделителей одинакового размера.
+
Эти идеальные разделители могут быть использованы как модули для построения сортирующей сети на <tex>N</tex>  входов, где <tex>N  = k^d</tex> для некоторого положительного числа d. Такая сеть будет представлять собой композицию сетей <tex>N_0, N_1, N_2 \dots N_{d-1}</tex>, где <tex>N_t</tex> – парраллельная композиция <tex>k^t</tex> идеальных разделителей одинакового размера. <tex>k^{d - t}</tex> Выходных проводов уровня <tex>N_t</tex> разделены на <tex>k</tex> блоков одинакового размерв и каждый из этих блоков формирует вход для идеального разделителя из N_{t+1}.
 +
Можно рассмотреть другую интерпретацию этой конструкции. k^d входных данных мы будем рассматривать как листья полного k-ичного дерева глубины d;  каждый модуль(разделитель) из N_t будем считать узлом, находящимся на высоте t  в нашем дереве. Будем считать, что в каждый момент времени t = 0, 1, 2, ... в - 1 входные провода распределены по всему уровню t нашего дерева. В то же время, каждый узел х на t уровне принимает k^{d - t}  проводов и эти провода затем используются как вход  для идеального разделителя который разбивает их на k блоков одинакового размера в промежуток времени между t  и t + 1. Выходные провода из  j получившегося блока идут в j ребенка вершины x. К моменту времени d каждый лист дерева содершит в себе только один провод, а этот провод содержит в себе значение, которое и приписывается к листу.
  
<tex>\alpha^*(t) = \frac{t\log \frac{1}{\nu} - \log N + \log(2A\nu k^3)}{\log A}</tex>
+
К сожалению, эта схема описывает сортирующую сеть глубины <tex>\Omega((\log_k N)(\log_m N)) </tex>: каждый идеальный разделитель на а проводов, если его делать из М-разделителей, должен иметь глубину более чем <tex>\log_M(\dfrac{k-1}{k}a). (Чтобы осознать это, заметим, что для каждого выхода y должно быть более чем <tex>\dfrac{k -1}{k}a</tex> входов x , таких, что ключ мог бы дойти от x до y). К счастью, схему можно переделать так, чтобы она описывала сортирующую сеть глубины <tex>O(\log_M N)</tex> : идеальные разделители можно заменить на более слабые модули константной глубины,чья слабость будет компенсироваться более сложным перемещением ключей через дерево.
  
<tex>\omega^*(t) = \frac{t\log \frac{1}{\nu} + \log(A\nu k)}{\log Ak}</tex>
+
Слабые модули мы назовем сепараторами. У каждого такого сепаратора есть а выходных проводов, которые делятся на блоки <tex> F_1, B_1, B_2, \dots, B_k, F_2 </tex> так, что <tex> |F_1| = |F_2|</tex> <tex> |B_1| = |B_2| = \dots = |B_k| </tex>;
  
<tex>\alpha(t) \ge \alpha^*(t),\quad  \alpha(t)\equiv t\;  mod\;  2 </tex>
+
Как правило, "обрамляющие блоки" <tex>F_1</tex> и <tex>F_2</tex> гораздо меньше всех остальных. В каком-то смысле, можно сказать, что сепаратор аппроксимирует идеальный разделитель.
 
 
 
 
<tex>\omega(t) \ge \omega^*(t),\quad  \omega(t)\equiv t\;  mod\;  2 </tex>
 
 
 
 
 
<tex> O(\log N) </tex>  
 
<tex> c\log_2 N </tex>
 
 
 
<tex> \pi(\alpha(t),t) =
 
\begin{cases}
 
0,&\text{если $\alpha(t + 1)>\alpha(t)$,}\\
 
\frac{\nu}{AK}c(a(t),t), &\text{если $\alpha(t + 1)>\alpha(t)$.}
 
\end{cases}
 
</tex>
 
 
 
<tex> \pi(i,t) = \frac{A\nu k - 1}{A^2k^2}c(i,t),\quad  \text{если $\alpha(t) < i < \omega(t)$,}
 
</tex>
 
 
 
<tex> \pi(\omega(t),t) =
 
\begin{cases}
 
\frac{A\nu k - 1}{A^2k^2}c(\omega(t),t),&\text{ $\omega(t + 1)>\omega(t)$,}\\
 
\alpha(\omega(t),t),&\text{если $\omega(t + 1)<\omega(t)$,}
 
\end{cases}
 
</tex>
 

Версия 22:37, 19 мая 2015

Ажтаи (Ajtai), Комлос (Komlos) и Шимереди (Szemeredi) сконструировали сортирующую сеть на N входов глубины [math] O(\log N) [/math], при они не углублялись в исследование значения константы, получавшейся при правильном соблюдении необходимой ассимптотики. Впоследствии Патерсон выяснил, что [math] O(\log N) [/math] можно заменить на [math] c\log_2 N [/math] с константой приблизительно равной [math] 6100 [/math]. Здесь будет описана более поздняя реализация, которая включает в себя меньшую константу [math]c[/math], а именно, будет доказано, что для любого целого числа [math]N[/math] такого,что [math]N \ge 2^{78}[/math] существует сортирующая сеть на [math]N[/math] входов, такая, что глубина в худшем случае будет [math]1830 \log_2 N - 58657 [/math].

Основными составяющими этой конструкции будут сортирующие сети на [math]M[/math] входов, такие ,что [math]M[/math] относительно мало. Мы назовем их [math]M[/math]-сортировщиками. Для любых выбранных положительных целых чисел [math]M[/math] и [math]N[/math] таких что [math] N \ge M[/math], конструкция будет включать в себя [math]N[/math] проводов, и будет сделана из [math]M[/math]-сортировщиков, глубина которых в худшем случае [math](48 + о(1))\log_MN + 115[/math] при [math]M \to \inf[/math]. (Стоит отметить, что асимптотическое [math]o(1)[/math] здесь относится к [math]M[/math], а не к [math]N[/math]).

Разделители

Сначала введем все необходимые понятия для построения сортирующей сети.


Определение:
Идеальным разделителем будем называть сеть, выходные провода которой разделены на K блоков одинакового размера, таких, что принимая на вход любые [math]a[/math] значений, сеть размещает первые [math]a/k[/math] минимальные по величине ключи в первый блок, следующие [math]a/k[/math] по величине ключи – во второй, и т.д.

Эти идеальные разделители могут быть использованы как модули для построения сортирующей сети на [math]N[/math] входов, где [math]N = k^d[/math] для некоторого положительного числа d. Такая сеть будет представлять собой композицию сетей [math]N_0, N_1, N_2 \dots N_{d-1}[/math], где [math]N_t[/math] – парраллельная композиция [math]k^t[/math] идеальных разделителей одинакового размера. [math]k^{d - t}[/math] Выходных проводов уровня [math]N_t[/math] разделены на [math]k[/math] блоков одинакового размерв и каждый из этих блоков формирует вход для идеального разделителя из N_{t+1}. Можно рассмотреть другую интерпретацию этой конструкции. k^d входных данных мы будем рассматривать как листья полного k-ичного дерева глубины d; каждый модуль(разделитель) из N_t будем считать узлом, находящимся на высоте t в нашем дереве. Будем считать, что в каждый момент времени t = 0, 1, 2, ... в - 1 входные провода распределены по всему уровню t нашего дерева. В то же время, каждый узел х на t уровне принимает k^{d - t} проводов и эти провода затем используются как вход для идеального разделителя который разбивает их на k блоков одинакового размера в промежуток времени между t и t + 1. Выходные провода из j получившегося блока идут в j ребенка вершины x. К моменту времени d каждый лист дерева содершит в себе только один провод, а этот провод содержит в себе значение, которое и приписывается к листу.

К сожалению, эта схема описывает сортирующую сеть глубины [math]\Omega((\log_k N)(\log_m N)) [/math]: каждый идеальный разделитель на а проводов, если его делать из М-разделителей, должен иметь глубину более чем [math]\log_M(\dfrac{k-1}{k}a). (Чтобы осознать это, заметим, что для каждого выхода y должно быть более чем \lt tex\gt \dfrac{k -1}{k}a[/math] входов x , таких, что ключ мог бы дойти от x до y). К счастью, схему можно переделать так, чтобы она описывала сортирующую сеть глубины [math]O(\log_M N)[/math] : идеальные разделители можно заменить на более слабые модули константной глубины,чья слабость будет компенсироваться более сложным перемещением ключей через дерево.

Слабые модули мы назовем сепараторами. У каждого такого сепаратора есть а выходных проводов, которые делятся на блоки [math] F_1, B_1, B_2, \dots, B_k, F_2 [/math] так, что [math] |F_1| = |F_2|[/math] [math] |B_1| = |B_2| = \dots = |B_k| [/math];

Как правило, "обрамляющие блоки" [math]F_1[/math] и [math]F_2[/math] гораздо меньше всех остальных. В каком-то смысле, можно сказать, что сепаратор аппроксимирует идеальный разделитель.