Участник:Dominica — различия между версиями
Dominica (обсуждение | вклад) м |
Dominica (обсуждение | вклад) м |
||
Строка 21: | Строка 21: | ||
Как правило, "обрамляющие блоки" <tex>F_1</tex> и <tex>F_2</tex> гораздо меньше всех остальных. В каком-то смысле, можно сказать, что сепаратор аппроксимирует идеальный разделитель. Тогда будем измерять точность аппроксимации величинами <tex> \delta_F, \varepsilon_F </tex> и <tex>\varepsilon_B</tex>. Сортирующая сеть, с такими же выходными проводами как и наш сепаратор, принимая на вход I, состоящее из a отдельных проводов, распределяет соответствующие <tex>I_j</tex> в выходные блоки <tex>B_j</tex>. Сераратор же распределяет вход <tex>I</tex> таким образом, что 1) для каждого <tex> j = 1, 2, \dots, k, </tex> не более <tex>\varepsilon_B a</tex> ключей из <tex>I_j</tex> не попадут в <tex>B_j</tex>. | Как правило, "обрамляющие блоки" <tex>F_1</tex> и <tex>F_2</tex> гораздо меньше всех остальных. В каком-то смысле, можно сказать, что сепаратор аппроксимирует идеальный разделитель. Тогда будем измерять точность аппроксимации величинами <tex> \delta_F, \varepsilon_F </tex> и <tex>\varepsilon_B</tex>. Сортирующая сеть, с такими же выходными проводами как и наш сепаратор, принимая на вход I, состоящее из a отдельных проводов, распределяет соответствующие <tex>I_j</tex> в выходные блоки <tex>B_j</tex>. Сераратор же распределяет вход <tex>I</tex> таким образом, что 1) для каждого <tex> j = 1, 2, \dots, k, </tex> не более <tex>\varepsilon_B a</tex> ключей из <tex>I_j</tex> не попадут в <tex>B_j</tex>. | ||
2)для каждого целого j такого, что <tex>1\le j\le \delta_F|F_i|</tex>не более <tex>\varepsilon_F j</tex> из <tex>j</tex> самых маленьких чисел могут не попасть в <tex>F_1</tex> и не более <tex>\varepsilon_F j</tex> из <tex>j</tex> самых больших чисел могут не попасть в <tex>F_2</tex> | 2)для каждого целого j такого, что <tex>1\le j\le \delta_F|F_i|</tex>не более <tex>\varepsilon_F j</tex> из <tex>j</tex> самых маленьких чисел могут не попасть в <tex>F_1</tex> и не более <tex>\varepsilon_F j</tex> из <tex>j</tex> самых больших чисел могут не попасть в <tex>F_2</tex> | ||
− | Что касается перемещения значений в дереве, то в момент времени <tex>t = 0</tex> все <tex>k^d</tex> проводов входят в корень. Между временами <tex> t</tex> и <tex>t + 1</tex> каждый узел <tex>x</tex>, в который входят какие-нибудь провода, использует эти а проводов как вход для сепаратора, с разумно выбранным размером для выходных блоков. Провода из каждого выходного блока <tex>B_j</tex> посывлаются в <tex>j</tex>того сына узла <tex>x</tex>а провода попавшие в <tex>F_1</tex> или <tex>F_2/tex> посылаются обратно к родителю <tex>x</tex>. (Если <tex>x</tex>. - корень, то <tex>F_1</tex> и <tex>F_2</tex> должны быть пустыми. Так как <tex>F_1</tex> и <tex>F_2/tex> сравнительно маленькие, то большинство значений провалится ниже к листам дерева; так как сепаратор не идеальный, то некоторые ключи могут быть посланы вниз в неправильном направлениии. Свойство 1) гарантирует, что очень малое количество собъется с пути, а свойство 2) гарантирует, что большинство из этих ключей вернутся назад и смогут исправить свое положение позже. | + | Что касается перемещения значений в дереве, то в момент времени <tex>t = 0</tex> все <tex>k^d</tex> проводов входят в корень. Между временами <tex> t</tex> и <tex>t + 1</tex> каждый узел <tex>x</tex>, в который входят какие-нибудь провода, использует эти а проводов как вход для сепаратора, с разумно выбранным размером для выходных блоков. Провода из каждого выходного блока <tex>B_j</tex> посывлаются в <tex>j</tex>того сына узла <tex>x</tex>а провода попавшие в <tex>F_1</tex> или <tex>F_2/tex> посылаются обратно к родителю <tex>x</tex>. (Если <tex>x</tex>. - корень, то <tex>F_1</tex> и <tex>F_2</tex> должны быть пустыми. Так как <tex>F_1</tex> и <tex>F_2</tex> сравнительно маленькие, то большинство значений провалится ниже к листам дерева; так как сепаратор не идеальный, то некоторые ключи могут быть посланы вниз в неправильном направлениии. Свойство 1) гарантирует, что очень малое количество собъется с пути, а свойство 2) гарантирует, что большинство из этих ключей вернутся назад и смогут исправить свое положение позже. |
== Конструкция сети == | == Конструкция сети == | ||
Версия 01:33, 21 мая 2015
Ажтаи (Ajtai), Комлос (Komlos) и Шимереди (Szemeredi) сконструировали сортирующую сеть на N входов глубины
, при они не углублялись в исследование значения константы, получавшейся при правильном соблюдении необходимой ассимптотики. Впоследствии Патерсон выяснил, что можно заменить на с константой приблизительно равной . Здесь будет описана более поздняя реализация, которая включает в себя меньшую константу , а именно, будет доказано, что для любого целого числа такого,что существует сортирующая сеть на входов, такая, что глубина в худшем случае будет .Основными составяющими этой конструкции будут сортирующие сети на
входов, такие ,что относительно мало. Мы назовем их -сортировщиками. Для любых выбранных положительных целых чисел и таких что , конструкция будет включать в себя проводов, и будет сделана из -сортировщиков, глубина которых в худшем случае при . (Стоит отметить, что асимптотическое здесь относится к , а не к ).Представление в виде дерева и разделители
Сначала введем все необходимые понятия для построения сортирующей сети.
Определение: |
Идеальным разделителем будем называть сеть, выходные провода которой разделены на K блоков одинакового размера, таких, что принимая на вход любые | значений, сеть размещает первые минимальные по величине ключи в первый блок, следующие по величине ключи – во второй, и т.д.
Эти идеальные разделители могут быть использованы как модули для построения сортирующей сети на
входов, где для некоторого положительного числа d. Такая сеть будет представлять собой композицию сетей , где – парраллельная композиция идеальных разделителей одинакового размера. Выходных проводов уровня разделены на блоков одинакового размерв и каждый из этих блоков формирует вход для идеального разделителя из N_{t+1}. Можно рассмотреть другую интерпретацию этой конструкции. k^d входных данных мы будем рассматривать как листья полного k-ичного дерева глубины d; каждый модуль(разделитель) из N_t будем считать узлом, находящимся на высоте t в нашем дереве. Будем считать, что в каждый момент времени t = 0, 1, 2, ... в - 1 входные провода распределены по всему уровню t нашего дерева. В то же время, каждый узел х на t уровне принимает k^{d - t} проводов и эти провода затем используются как вход для идеального разделителя который разбивает их на k блоков одинакового размера в промежуток времени между t и t + 1. Выходные провода из j получившегося блока идут в j ребенка вершины x. К моменту времени d каждый лист дерева содершит в себе только один провод, а этот провод содержит в себе значение, которое и приписывается к листу.К сожалению, эта схема описывает сортирующую сеть глубины
: каждый идеальный разделитель на а проводов, если его делать из М-разделителей, должен иметь глубину более чем входов x , таких, что ключ мог бы дойти от x до y). К счастью, схему можно переделать так, чтобы она описывала сортирующую сеть глубины : идеальные разделители можно заменить на более слабые модули константной глубины,чья слабость будет компенсироваться более сложным перемещением ключей через дерево.Слабые модули мы назовем сепараторами. У каждого такого сепаратора есть а выходных проводов, которые делятся на блоки
так, что ;Как правило, "обрамляющие блоки"
и гораздо меньше всех остальных. В каком-то смысле, можно сказать, что сепаратор аппроксимирует идеальный разделитель. Тогда будем измерять точность аппроксимации величинами и . Сортирующая сеть, с такими же выходными проводами как и наш сепаратор, принимая на вход I, состоящее из a отдельных проводов, распределяет соответствующие в выходные блоки . Сераратор же распределяет вход таким образом, что 1) для каждого не более ключей из не попадут в . 2)для каждого целого j такого, что не более из самых маленьких чисел могут не попасть в и не более из самых больших чисел могут не попасть в Что касается перемещения значений в дереве, то в момент времени все проводов входят в корень. Между временами и каждый узел , в который входят какие-нибудь провода, использует эти а проводов как вход для сепаратора, с разумно выбранным размером для выходных блоков. Провода из каждого выходного блока посывлаются в того сына узла а провода попавшие в или . (Если . - корень, то и должны быть пустыми. Так как и сравнительно маленькие, то большинство значений провалится ниже к листам дерева; так как сепаратор не идеальный, то некоторые ключи могут быть посланы вниз в неправильном направлениии. Свойство 1) гарантирует, что очень малое количество собъется с пути, а свойство 2) гарантирует, что большинство из этих ключей вернутся назад и смогут исправить свое положение позже.Конструкция сети
лемма 3.1 Если
тогда
когда
лемма 3.2 Если тогда или