Упорядоченное множество — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Упорядоченное множество''' представляет собой коллекцию элементов, каждому из которых присваивается определенный ключ, отвечающий за порядок этого элемента в множестве.
+
'''Упорядоченное множество''' <tex>Set</tex> представляет собой коллекцию элементов <tex>elem</tex>, каждому из которых присваивается определенный ключ <tex>key</tex>, отвечающий за порядок этого элемента в множестве. Бинарное отношение <tex>R</tex> на упорядоченном множестве <tex>Set</tex> обладает следующими свойствами:
 +
* [[Антисимметричное отношение|Антисимметричность]]: <tex>\mathcal {8} x,y \in A \  (xRy \land yRx \Rightarrow x = y)</tex>;
 +
* [[Транзитивное отношение|Транзитивность]]: <tex>\mathcal {8} x,y,z \in A \  (xRy \land yRz \Rightarrow xRz)</tex>.
 
}}
 
}}
 +
Пустое множество <tex>  \varnothing </tex> считается упорядоченным.
 +
  
 
==Операции над упорядоченным множеством==
 
==Операции над упорядоченным множеством==

Версия 18:44, 29 мая 2015

Определение:
Упорядоченное множество [math]Set[/math] представляет собой коллекцию элементов [math]elem[/math], каждому из которых присваивается определенный ключ [math]key[/math], отвечающий за порядок этого элемента в множестве. Бинарное отношение [math]R[/math] на упорядоченном множестве [math]Set[/math] обладает следующими свойствами:

Пустое множество [math] \varnothing [/math] считается упорядоченным.


Операции над упорядоченным множеством

Над упорядоченным множеством [math]Set[/math] заданы следующие операции:

Insert

Функция [math]\mathrm {insert(Set, elem, elemKey)}[/math] добавляет заданный элемент [math]elem[/math], имеющий ключ [math]elemKey[/math], в подходящее место множества [math]Set[/math] (сохраняя свойство упорядоченности).

Delete

Функция [math]\mathrm {delete(Set, key)}[/math] удаляет элемент, имеющий ключ [math]key[/math] (сохраняя свойство упорядоченности).

Search

Функция [math]\mathrm {search(Set, key)}[/math], которая получает на вход искомый ключ [math]key[/math], и возвращает указатель на элемент множества [math]Set[/math] или специальное значение [math]null[/math], если такого элемента нет.

Minimum

Функция [math]\mathrm {minimum(Set)}[/math] возвращает указатель на минимальный элемент множества [math]Set[/math].

Maximum

Функция [math]\mathrm {maximum(Set)}[/math] возвращает указатель на максимальный элемент множества [math]Set[/math].

Predecessor

Функция [math]\mathrm {predecessor(Set, elem)}[/math] возвращает указатель на элемент, стоящий перед элементом [math]elem[/math] множества [math]Set[/math].

Successor

Функция [math]\mathrm {successor(Set, elem)}[/math] возвращает указатель на элемент, стоящий после элемента [math]elem[/math] множества [math]Set[/math].

Пример упорядоченного множества:

Примерами упорядоченных множеств могут служить такие структуры как деревья.

Литература

1. Кормен, Т., Лейзерсон, Ч., Ривест, Р., Алгоритмы: построение и анализ = Introduction to Algorithms / — 1-е изд. — Пер. с англ под ред. А. Шеня. — М.: МЦНМО, 2002.—960 с. — ISBN 5-900916-37-5