Сортировка слиянием — различия между версиями
Строка 76: | Строка 76: | ||
* Устойчивая, | * Устойчивая, | ||
* Сортировка связанных списков, | * Сортировка связанных списков, | ||
− | * | + | * Сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память. |
===Недостатки=== | ===Недостатки=== | ||
* При любых входных данных время работы {{---}} <tex>O(n\log{n})</tex>, | * При любых входных данных время работы {{---}} <tex>O(n\log{n})</tex>, | ||
− | * | + | * Требуется дополнительно <tex>O(n)</tex> памяти, но можно модифицировать до <tex>O(1)</tex>. |
==См. также== | ==См. также== | ||
Строка 89: | Строка 89: | ||
==Источники информации== | ==Источники информации== | ||
*[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием] | *[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием] | ||
+ | *[http://en.wikipedia.org/wiki/External_sorting Wikipedia {{---}} External sorting] | ||
*[http://www.sorting-algorithms.com/merge-sort Визуализатор] | *[http://www.sorting-algorithms.com/merge-sort Визуализатор] | ||
*[http://ru.wikibooks.org/wiki/%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D1%8B_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B8_%D1%81%D0%BB%D0%B8%D1%8F%D0%BD%D0%B8%D0%B5%D0%BC Викиучебник {{---}} Примеры реализации на различных языках программирования] | *[http://ru.wikibooks.org/wiki/%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D1%8B_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8_%D1%81%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B8_%D1%81%D0%BB%D0%B8%D1%8F%D0%BD%D0%B8%D0%B5%D0%BC Викиучебник {{---}} Примеры реализации на различных языках программирования] | ||
+ | |||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Сортировки]] | [[Категория: Сортировки]] | ||
[[Категория: Сортировки на сравнениях]] | [[Категория: Сортировки на сравнениях]] |
Версия 14:51, 5 июня 2015
Сортировка слиянием (англ. Merge sort) — алгоритм сортировки, предложенный Джоном фон Нейманом в 1945 году.
Это устойчивый алгоритм, использующий
дополнительной памяти и работающий за времени.Содержание
Принцип работы
Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом:
- Если в рассматриваемом массиве один элемент, то он уже отсортирован — алгоритм завершает работу.
- Иначе массив разбивается на две части, которые сортируются рекурсивно.
- После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив.
Слияние двух массивов
У нас есть два массива
и (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив размером . Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.Множество отсортированных списков с операцией моноидом, где нейтральным элементом будет пустой список.
являетсяНиже приведён псевдокод процедуры слияния, который сливает две части массива
— иfunction merge(a : int[n]; left, mid, right : int): it1 = 0 it2 = 0 result : int[right - left] while left + it1 < mid and mid + it2 < right if a[left + it1] < a[mid + it2] result[it1 + it2] = a[left + it1] it1 += 1 else result[it1 + it2] = a[mid + it2] it2 += 1 while left + it1 < mid result[it1 + it2] = a[left + it1] it1 += 1 while mid + it2 < right result[it1 + it2] = a[mid + it2] it2 += 1 for i = 0 to it1 + it2 a[left + i] = result[i]
Рекурсивный алгоритм
Функция сортирует подотрезок массива с индексами в полуинтервале
function mergeSortRecursive(a : int[n]; left, right : int): if left + 1 >= right return mid = (left + right) / 2 mergeSortRecursive(a, left, mid) mergeSortRecursive(a, mid, right) merge(a, left, mid, right)
Итеративный алгоритм
При итеративном алгоритме используется на
function mergeSortIterative(a : int[n]): for i = 1 to n, i *= 2 for j = 0 to n - i, j += 2 * i merge(a, j, j + i, min(j + 2 * i, n))
Время работы
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай
— время, необходимое на то, чтобы слить два массива. Распишем это соотношение:
.
Осталось оценить
. Мы знаем, что , а значит . Уравнение примет вид . Так как — константа, то .Сравнение с другими алгоритмами
Достоинства
- Устойчивая,
- Сортировка связанных списков,
- Сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память.
Недостатки
- При любых входных данных время работы — ,
- Требуется дополнительно памяти, но можно модифицировать до .
См. также
- Сортировка кучей
- Быстрая сортировка
- Timsort
- Cортировка слиянием с использованием O(1) дополнительной памяти