Пересечение матроидов, определение, примеры — различия между версиями
(→Примеры) |
м (→Примеры) |
||
Строка 6: | Строка 6: | ||
==Примеры== | ==Примеры== | ||
− | # <tex>M_1</tex> {{---}} графовый матроид, <tex>M_2</tex> {{---}} | + | # <tex>M_1</tex> {{---}} графовый матроид, <tex>M_2</tex> {{---}} '''разноцветный матроид''' (англ. ''multicolored matroid'') (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение {{---}} это разноцветный лес (англ. ''rainbow forests''). |
# Пусть <tex>G</tex> {{---}} двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. Заметим, что пересечение данных матроидов не является матроидом. | # Пусть <tex>G</tex> {{---}} двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> {{---}} множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение {{---}} это множество всевозможных паросочетаний графа. Заметим, что пересечение данных матроидов не является матроидом. | ||
− | # Пусть <tex>D = \langle V, A \rangle </tex> {{---}} <tex>r</tex>-ориентированное дерево. Пусть граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>. Тогда рассмотрим два матроида <tex>M_1 = \langle A, I_1 \rangle | + | # Пусть <tex>D = \langle V, A \rangle </tex> {{---}} <tex>r</tex>-ориентированное дерево. Пусть граф <tex>G</tex> {{---}} неориентированный граф, соответствующий графу <tex>D</tex>. Тогда рассмотрим два матроида <tex>M_1 = \langle A, I_1 \rangle, M_2 = \langle A, I_2 \rangle</tex>, где <tex>A</tex> {{---}} множество ребёр графа, <tex>M_1</tex> {{---}} графовый матроид <tex>G</tex>, <tex>I_2 = \{F \subseteq X: deg^-(v) \le 1 \: \forall v \in V \setminus \{r\} \}</tex>. Пересечения данных матроидов является ориентированным деревом. |
==Источники== | ==Источники== |
Версия 21:39, 7 июня 2015
Определение: |
Пусть даны два матроида | и . Пересечением матроидов и называется пара , где — носитель исходных матроидов, а .
Примеры
- — графовый матроид, — разноцветный матроид (англ. multicolored matroid) (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение — это разноцветный лес (англ. rainbow forests).
- Пусть — двудольный граф и заданы два матроида , , где — множество ребёр графа, , . Тогда их пересечение — это множество всевозможных паросочетаний графа. Заметим, что пересечение данных матроидов не является матроидом.
- Пусть — -ориентированное дерево. Пусть граф — неориентированный граф, соответствующий графу . Тогда рассмотрим два матроида , где — множество ребёр графа, — графовый матроид , . Пересечения данных матроидов является ориентированным деревом.
Источники
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы (глава 4. Матроиды)
- Lecture notes on matroid intersection