Задачи интерполирования функции — различия между версиями
Rybak (обсуждение | вклад) (→Задача интерполяции) |
Rybak (обсуждение | вклад) (→Задача интерполяции) |
||
| Строка 10: | Строка 10: | ||
форме Ньютона. | форме Ньютона. | ||
| − | Докажем от противного, что если такой полином существует, то только один. Допустим, что существует еще один такой полином <tex>T_n | + | Докажем от противного, что если такой полином существует, то только один. Допустим, что существует еще один такой полином <tex>T_n</tex>, удовлетворяющий условию <tex>T_n(x_k) = y_k</tex>. |
| − | Рассмотрим полином <tex>M_n | + | Рассмотрим полином <tex>M_n = P_n - T_n</tex>. Тогда <tex>M_n(x_k) = y_k - y_k = 0, k = \overline{0,n}</tex>. |
| − | То есть этот полином имеет <tex>n+1</tex> корень, но <tex>deg M_n | + | То есть этот полином имеет <tex>n+1</tex> корень, но <tex>deg M_n \le n</tex>. Получили противоречие. |
Версия 09:37, 16 ноября 2010
Содержание
Задача интерполяции
| Определение: |
| Система узлов — набор из чисел и . |
Дана система узлов. Требуется найти полином степени не выше такой, что для любого верно, что .
Будем искать его в форме Лагранжа, хотя имеется ряд равносильных представлений, например, в форме Ньютона.
Докажем от противного, что если такой полином существует, то только один. Допустим, что существует еще один такой полином , удовлетворяющий условию . Рассмотрим полином . Тогда . То есть этот полином имеет корень, но . Получили противоречие.
Будем искать его в форме Лагранжа. Для этого построим фундаментальные полиномы.
| Определение: |
| Фундаментальные полиномы степени не выше — полиномы, отвечающие заданной
системе узлов такие, что . |
Для его построения обозначим за . Это полином степени .
Составим выражение , . В этом случае дробь корректно определена. При получаем неопределённость . Раскроем её по правилу Лопиталя: при . Тогда доопределим по непрерывности дробь единицей. Но при — это полином -й степени. Значит, .
Тогда , что и требовалось. ` Обозначим .
.
Требуемый полином найден.
Замечание: из формулы для фундаментальных полиномов легко записать в развёрнутом виде:
Трактовки и другие задачи
Выведенную ранее формулу Тейлора можно трактовать следующим образом: «Дано . Найти полином степени не выше такой, что ».
Ранее мы обнаружили, что это .
Теперь другая задача: «Дана функция и система узлов. Требуется найти полином степени не выше такой, что »
Положим . По пункту 1 этот полином решает поставленную задачу. Для полинома Тейлора .
Сейчас будет доказана теорема аналогичная теореме об интерполяционном полиноме Лагранжа, после чего станет ясно, что это задачи одного класса. Во втором случае это изложено на языке производных, а в первом — через значения функции в точках.
Эти два метода метода можно комбинировать, лишь бы информативных значений было . Такие промежуточные задачи называют
интерполированием по Эрмиту. Но они никому не нужны.
Теорема Лагранжа
| Теорема (Лагранжа): |
Пусть раз дифференцируема на . На этом промежутке задана система узлов. Тогда для соответственного
интерполяционного полинома Лагранжа выполняется равенство , где — некоторая точка из , зависящая от . |
| Доказательство: |
|
Случай тривиален. Пусть тогда . Для доказательства применим теорему Ролля. Определим вспомогательную функцию , где — коэффициент, подлежащий определению, а дано.
Для определения потребуем, чтобы было равно .
, так как .
Итак, при выбранном будет , , то есть принимает нулевые значения в точках. Очевидно, из узлов и точки можно сделать последовательный отрезок. На конце каждого из них принимает значение . Значит, по теореме Ролля на каждом из них найдётся по корню производной. Из полученных корней можно сделать отрезков, на каждом из них по теореме Ролля найдётся по корню второй производной… В конце концов останется один отрезок, границами которого будут корни . Тогда по теореме Ролля на этом отрезке найдётся корень . Его и обозначим за . Подведём промежуточный итог: найдено такое, что .
Продифференцируем раз. . . Таким образом, . Подставим .
|
Следствие
В условии теоремы было неравенство ,
Замечание
Следует понимать, что на самом деле какую бы систему узлов мы не взяли на как по числу точек в ней, так и по характеру распределения значений, для этого промежутка всегда можно построить интерполяционный многочлен, который будет отличаться от неё сколь угодно много(нипанянтна — прим. наборщика)