Задачи интерполирования функции — различия между версиями
Rybak (обсуждение | вклад) (→Задача интерполяции) |
Komarov (обсуждение | вклад) м (→Теорема Лагранжа) |
||
| Строка 98: | Строка 98: | ||
<tex>f(x) = L_n(x) + \frac{f^{n + 1}(c_x)}{(n+1)!} \cdot \omega_n(x)</tex>, где <tex>c_x</tex> — некоторая точка из <tex>\langle a; b \rangle</tex>, зависящая от <tex>x</tex>. | <tex>f(x) = L_n(x) + \frac{f^{n + 1}(c_x)}{(n+1)!} \cdot \omega_n(x)</tex>, где <tex>c_x</tex> — некоторая точка из <tex>\langle a; b \rangle</tex>, зависящая от <tex>x</tex>. | ||
|proof= | |proof= | ||
| − | Случай <tex>x = x_k | + | Случай <tex>x = x_k</tex> тривиален. |
Пусть тогда <tex>x \ne x_k</tex>. | Пусть тогда <tex>x \ne x_k</tex>. | ||
| Строка 104: | Строка 104: | ||
подлежащий определению, а <tex>x</tex> дано. | подлежащий определению, а <tex>x</tex> дано. | ||
| − | <tex>g(x_j) = f(x_j) - L_n(x_j) - k \omega_n(x_j) = 0</tex> | + | <tex>\forall g = \overline{0, n}:\quad g(x_j) = f(x_j) - L_n(x_j) - k \omega_n(x_j) = 0</tex> |
Для определения <tex>k</tex> потребуем, чтобы <tex>g(x)</tex> было равно <tex>0</tex>. | Для определения <tex>k</tex> потребуем, чтобы <tex>g(x)</tex> было равно <tex>0</tex>. | ||
Версия 09:38, 16 ноября 2010
Содержание
Задача интерполяции
| Определение: |
| Система узлов — набор из чисел и . |
Дана система узлов. Требуется найти полином степени не выше такой, что для любого верно, что .
Будем искать его в форме Лагранжа, хотя имеется ряд равносильных представлений, например, в форме Ньютона.
Докажем от противного, что если такой полином существует, то только один. Допустим, что существует еще один такой полином , удовлетворяющий условию . Рассмотрим полином . Тогда . То есть этот полином имеет корень, но . Получили противоречие.
Будем искать его в форме Лагранжа. Для этого построим фундаментальные полиномы.
| Определение: |
| Фундаментальные полиномы степени не выше — полиномы, отвечающие заданной
системе узлов такие, что . |
Для его построения обозначим за . Это полином степени .
Составим выражение , . В этом случае дробь корректно определена. При получаем неопределённость . Раскроем её по правилу Лопиталя: при . Тогда доопределим по непрерывности дробь единицей. Но при — это полином -й степени. Значит, .
Тогда , что и требовалось. ` Обозначим .
.
Требуемый полином найден.
Замечание: из формулы для фундаментальных полиномов легко записать в развёрнутом виде:
Трактовки и другие задачи
Выведенную ранее формулу Тейлора можно трактовать следующим образом: «Дано . Найти полином степени не выше такой, что ».
Ранее мы обнаружили, что это .
Теперь другая задача: «Дана функция и система узлов. Требуется найти полином степени не выше такой, что »
Положим . По пункту 1 этот полином решает поставленную задачу. Для полинома Тейлора .
Сейчас будет доказана теорема аналогичная теореме об интерполяционном полиноме Лагранжа, после чего станет ясно, что это задачи одного класса. Во втором случае это изложено на языке производных, а в первом — через значения функции в точках.
Эти два метода метода можно комбинировать, лишь бы информативных значений было . Такие промежуточные задачи называют
интерполированием по Эрмиту. Но они никому не нужны.
Теорема Лагранжа
| Теорема (Лагранжа): |
Пусть раз дифференцируема на . На этом промежутке задана система узлов. Тогда для соответственного
интерполяционного полинома Лагранжа выполняется равенство , где — некоторая точка из , зависящая от . |
| Доказательство: |
|
Случай тривиален. Пусть тогда . Для доказательства применим теорему Ролля. Определим вспомогательную функцию , где — коэффициент, подлежащий определению, а дано.
Для определения потребуем, чтобы было равно .
, так как .
Итак, при выбранном будет , , то есть принимает нулевые значения в точках. Очевидно, из узлов и точки можно сделать последовательный отрезок. На конце каждого из них принимает значение . Значит, по теореме Ролля на каждом из них найдётся по корню производной. Из полученных корней можно сделать отрезков, на каждом из них по теореме Ролля найдётся по корню второй производной… В конце концов останется один отрезок, границами которого будут корни . Тогда по теореме Ролля на этом отрезке найдётся корень . Его и обозначим за . Подведём промежуточный итог: найдено такое, что .
Продифференцируем раз. . . Таким образом, . Подставим .
|
Следствие
В условии теоремы было неравенство ,
Замечание
Следует понимать, что на самом деле какую бы систему узлов мы не взяли на как по числу точек в ней, так и по характеру распределения значений, для этого промежутка всегда можно построить интерполяционный многочлен, который будет отличаться от неё сколь угодно много(нипанянтна — прим. наборщика)